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Polarization phenomena in open charm photoproduction processes
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We analyze polarization effects in associative photoproduction of pseudoscalar (D) charmed
mesons in exclusive processes γ +N → Yc +D, Yc = Λ+

c , Σc. Circularly polarized photons induce
nonzero polarization of the Yc-hyperon with x- and z-components (in the reaction plane) and non
vanishing asymmetries Ax and Az for polarized nucleon target. These polarization observables can
be predicted in model-independent way for exclusive D-production processes in collinear kinemat-
ics. The T-even Yc-polarization and asymmetries for non-collinear kinematics can be calculated in
framework of an effective Lagrangian approach. The depolarization coefficients Dab, characterizing
the dependence of the Yc-polarization on the nucleon polarization are also calculated.

PACS numbers: 21.10.Hw,13.88.+e,14.40.Lb,14.65.Dw

I. INTRODUCTION

The experimental study of photoproduction of charmed particles on nucleons through exclusive and inclusive re-
actions: γ +N → Yc +Dc (D∗

c ), Yc = Λc(Σc), γ + N → N +Dc +Dc, γ + N → Λc(Λc) +X started about twenty
years ago, [1, 2], in the energy range Eγ = 20÷ 70 GeV. Since then, several experiments were devoted to this subject,
[3, 4, 5], but, up to now, the smallest energy where data are available is Eγ=20 GeV, [6], which is still relatively far

from threshold (for example, Ethr = 8.7 GeV for γ + p→ Λ+
c +D0).

Charm particle photoproduction is usually interpreted according to the photon-gluon fusion mechanism (PGF),
γ+G→ c+c [7], which can be considered as the simplest QCD hard process (called leading order (LO) approximation).
Considering the corresponding fragmentation functions for c→ Dc+X , c→ Yc+X , c→ Dc+X ..., the observables

for inclusive processes of charmed mesons and hyperons photoproduction can be calculated. The existing experimental
data on the total cross section for open charm photoproduction, γ +N → charm+X , the relative production of D0

and D+-mesons as well as Λ+
c –hyperon are usually interpreted within this approach.

In principle, other mechanisms (of non-perturbative nature) should also be taken into account, such as, for example,
the diffractive production of DD or ΛcD pairs, through Pomeron exchange. Different hadronic exchanges can also
contribute to the simplest exclusive processes, γ + N → Yc + Dc (D∗

c ), in the near threshold region [8, 9]. More
experimental and theoretical studies are needed in order to clarify the physics of charm particle photoproduction.
Up to now, all charm photoproduction experiments have been done with unpolarized particles1. Polarization

phenomena will be essential for the understanding of the reaction mechanism, in particular the importance of the
main subprocess, γ + G → c + c. For example, T-even polarization observables as the ΣB-asymmetry [10], induced
by a linearly polarized photon beam, the asymmetries in collisions of circularly polarized photons on polarized gluons
[11] and the polarization of the c-quark have relatively large absolute values, in framework of this model and can
be actually measured. The running COMPASS experiment [12], with longitudinally polarized muons and polarized
targets (p or LiD) will access these polarization effects.
High energy photon beams with large degree of circular polarization are actually available for physical experiments.

Complementary to the linear polarized photon beams, they allow to address different interesting problems of hadron
electrodynamics. Circularly polarized photon beams can be obtained in different ways, for example by backward
scattering of a laser beam by high energy electron beam with longitudinal polarization. In JLab circularly polarized
bremsstrahlung photons were generated by polarized electrons [13, 14]. The proton polarization in the process of
deuteron photodisintegration, ~γ + d → ~p + n [15] was investigated to test QCD applicability [16], with respect to
hadron helicity conservation in high-energy photon-deuteron interactions. Coherent scattering of a longitudinally
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†Permanent address: NSC Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
1 We should mention here an earlier attempt [6] to study open charm photoproduction with linearly polarized photons.
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polarized electron beam by a diamond crystal results in a very particular beam of circularly polarized photons [17].
In the COMPASS experiment [12], the high energy longitudinally polarized muon beam generates circularly polarized
photons (real and virtual) in a wide energy interval (50-130 GeV).
The interest of a circularly polarized photon beam is related with the very actual question about how the proton

spin is shared among its constituents [18, 19, 20, 21]. The determination of the gluon contribution, ∆G, to the nucleon
spin is the object of different experiments with polarized beams and targets [22, 23].
In particular, the production of charmed particles in collisions of longitudinally polarized muons with polarized

proton target will be investigated by the COMPASS collaboration. In the framework of the photon-gluon fusion
model [7], γ∗ + G → c + c, (γ∗ is a virtual photon), the corresponding asymmetry (for polarized µp-collisions),
is related to the polarized gluon content in the polarized protons [24, 25, 26]. Due to the future impact of such
result, it seems necessary to understand all the other possible mechanisms which can contribute to inclusive charm
photoproduction, such as γ+ p→ D0 +X , for example. One possible and a priori important background, which can
be investigated in detail, is the process of exclusive associative charm photoproduction, with pseudoscalar and vector
charmed mesons in the final state, γ + p → Yc +D(D∗). The mechanism of photon-gluon fusion, which successfully
describes the inclusive spectra of D and D∗ mesons at high photon energies, can not be easily applied to exclusive
processes, at any energy. Threshold considerations of such processes in terms of standard perturbative QCD have been
applied only to the energy dependence of the cross section of γ+ p→ p+ J/ψ [27], as, in such approach, polarization
phenomena can not be calculated without additional assumptions.
In this respect, the formalism of the effective Lagrangian approach (ELA) seems very convenient for the calculation

of exclusive associative photoproduction of charmed particles, such as γ+N → Y +
c D(D∗) [8, 9, 28] at least in the near

threshold region. Such approach is also widely used for the analysis of various processes involving charmed particles
[29], as, for example, J/ψ-suppression in high energy heavy ion collisions, in connection with quark-gluon plasma
transition [30]. We analyzed earlier different exclusive processes of associative charm particles photoproduction,
γ+N → Y +

c +D(D∗) in the threshold region, and indicated that polarization phenomena can be naturally predicted
for those reactions. In this paper we extend this model to higher energies by including the mechanism of D∗ exchange
and apply the ELA approach to the collision of circularly polarized photons with an unpolarized and a polarized

proton target. We predict the angular and energy dependences of the asymmetries in ~γ + ~N → Y +
c + D processes

and of the polarizations of the Y +
c -hyperons, produced in ~γ + N → Y +

c + D with circularly polarized photons (on

polarized target) and in γ + ~N → Y +
c +D (with unpolarized photons on polarized target).

The exclusive reactions, γ +N → Yc +D (D∗), which are object of this paper, are important not only as possible
background for experiments aiming to the measurement of the gluon contribution to the nucleon spin, but these
processes have an intrinsic physical interest, in the understanding of charm particle electrodynamics. Let us mention
some important aspects:

• possibility to measure the electromagnetic properties of charmed particles, such as the magnetic moments of
Yc-hyperons or the vector D∗-meson;

• test of SU(4)-symmetry for the strong NDcYc-coupling constants;

• determination of the P-parity of charmed particles;

• explanation of the asymmetric ratio D/D, Λc/Λc in open charm photoproduction reactions;

• understanding of nonperturbative mechanisms for associative charm photoproduction.

The exclusive reactions γ +N → Yc +D (D∗) should largely contribute to the total cross section, in particular in
the near threshold region, in analogy with the processes of vector meson production, K and K∗ production in πN
or NN collisions. For example, at Eγ = 20 GeV, the associative ΛcD-production contribute 71% to the total cross
section of open charm photoproduction [6].
The paper is organized as follows. Using the standard parametrization of the spin structure for the matrix element

of γ+N → Yc+D-processes, in Section II we calculate the one and two spin polarization observables in terms of four
scalar amplitudes. Section III and IV contain a description of possible non-perturbative mechanisms for exclusive
associative charm photoproduction and the relativistic parametrization of the corresponding matrix elements. In
section V we give three set of parameters, corresponding to three possible models for γ+p→ Λ+

c +D0, which describe
the energy dependence of the total cross section. Polarization phenomena for the three models are discussed in Section
VI.



3

II. POLARIZATION OBSERVABLES FOR γ +N → Yc +D

We consider here different polarization observables for associative YcD photoproduction, starting from the simplest
one-spin asymmetry ΣB, induced by photons with linear polarization, to the depolarization coefficients Dab, which
describe the dependence of the polarization of the produced Yc-hyperon on the nucleon target polarization.

A. Spin structure of the matrix element and differential cross section

We will use the standard parametrization [31] of the spin structure for the amplitude of pseudoscalar meson
photoproduction on the nucleon:

M(γN → YcD) = χ†
2

[

i~σ · ~ef1 + ~σ · ~̂q~σ · ~̂k × ~ef2 + i~e · ~̂q~σ · ~̂kf3 + i~σ · ~̂q~e · ~̂qf4
]

χ1, (1)

where ~̂k and ~̂q are the unit vectors along the three-momentum of γ and D; fi, i=1-4, are the scalar amplitudes,
which are functions of two independent kinematical variables, the square of the total energy s and cosϑ, where ϑ is
the D–meson production angle in the reaction center of mass (CMS) (with respect to the direction of the incident
photon), χ1 and χ2 are the two-component spinors of the initial nucleon and the produced Yc-baryon.
Note that the pseudoscalar nature of the D–meson is not experimentally confirmed up to now, therefore we follow

here the prescription of the quark model for the P-parities of D and Yc-charm particles.
The differential cross section when all particles are unpolarized, can be derived from (1):

dσ

dΩ
=
q

k

(E1 +m)(E2 +M)

64π2s
N0

and

N0 = |f1|
2 + |f2|

2 − 2 cosϑRef1f
∗
2 +

sin2 ϑ

{

1

2

(

|f3|
2 + |f4|

2
)

+Re [f2f
∗
3 + 2 (f1 + cosϑf3) f

∗
4 ]

}

, (2)

where E1(E2) and m(M) are the energy and the mass of N(Yc), respectively.

B. Charm photoproduction with linearly polarized photons

A linearly polarized photon beam, on an unpolarized proton target, may induce a beam asymmetry ΣB defined as:

ΣB =
dσ⊥/dΩ− dσ‖/dΩ

dσ⊥/dΩ+ dσ‖/dΩ
, (3)

with

N0ΣB = −
sin2

2
ϑ
[

|f3|
2 + |f4|

2 + 2Ref2f
∗
3 + 2Re(f1 + cosϑf3)f

∗
4

]

, (4)

where dσ⊥/dΩ and dσ‖/dΩ are the differential cross sections for the absorption of photon with linear polarization,
which is orthogonal or parallel to the reaction plane.
The measurement of this observable for the processes ~γ +N → Yc +D is important as this reaction constitutes a

possible background with respect to PGF, ~γ + G → c + c. For all these processes, ΣB is the simplest polarization
observable of T-even nature, which does not vanish in LO approximation. Moreover, for γ + G → c + c, it has a
large sensitivity to the mass of the c-quark, as it is proportional to m2

c and it does not depend on the fragmentation
functions, c → D(Λc) + X . In this approach, ΣB(~γN → ccX) is determined by the unpolarized gluon distribution
G(x), which is relatively well known, in comparison with the polarized gluon distribution, ∆G(x). So, in principle,

ΣB(~γN → ccX) can be predicted with better precision than the asymmetry Az(~γ ~N → ccX) (in the collision of
circularly polarized photons with a longitudinally polarized target) which is actually considered the most direct way
to access ∆G(x).
High energy photon beams with linear polarization can be obtained at SLAC and at CERN. In the conditions of the

COMPASS experiment, the scattering of muons, p(µ, µ′D)X , allows, in principle, to measure ΣB even for Q2 6= 0. For
this aim, it is necessary to study the φ-dependence of the corresponding exclusive cross section, taking into account
that the cos 2φ-contribution is proportional to ΣB (where φ is the azimuthal angle of D-production, with respect to
the muon scattering plane).
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C. Collisions of circularly polarized photons with a polarized proton target

Circularly polarized photon beams allow to obtain additional dynamical information in comparison with photons
with linear polarization, in hadronic processes (photoproduction or photodisintegration). The difference between
linear and circular photon polarizations is due to the P-odd nature of the photon helicity (λ = ±1), which is the
natural characteristic of circularly polarized photons. Therefore, in any binary process, γ + a→ b+ c (a, b, and c are
hadrons and/or nuclei), with circularly polarized photons, the asymmetry, in case of unpolarized target, vanishes, due
to the P-invariance of electromagnetic interactions of hadrons. In contrast, linearly polarized photons generally induce
non-zero asymmetry, even in case of unpolarized target and unpolarized final particles. Circular polarization manifests
itself only in two-spin (or more) polarization phenomena, as for example, the correlation polarization coefficient of

photon beam and proton target, ~γ + ~p→ Λ+
c +D0, or the polarization of the final Λc-hyperon in ~γ + p→ ~Λ+

c +D0.
The analysis of these processes is the object of the present paper. Note that in both cases, the components of the
target polarization and the Λ+

c polarization lie in the reaction plane, due to the P-invariance. Note also, that all these
polarization observables are T-even, i.e. they may not vanish even if the amplitudes of the considered process are
real.
Another possible two-spin correlation coefficient with circularly polarized photons for the process γ+~p→ Λ+

c +D∗0

is the vector polarization of the D∗-meson. In this connection, however, it is necessary to stress that the vector
polarization ofD∗ can not be measured through its most probable decays: D∗ → D+π, D∗ → D+γ,D∗ → D+e++e−,
which are induced by P-invariant strong and electromagnetic interaction. The matrix elements for these decays are
characterized by a single spin structure, which is insensitive to the vector polarization.
For completeness, let us mention two recent applications of high energy circularly polarized photon beams. One

is the experimental verification of the Gerasimov-Drell-Hearn sum rule [32], which is determined by an integral of
the difference of the total γN -cross section, with two possible total spin projections, 3/2 and 1/2. Such quantity,
σ3/2−σ1/2, can be measured in collisions of circularly polarized photons with a polarized nucleon target. Measurements
are going on at MAMI, for Eγ < 800 MeV [33] and at JLab [34].

In the general case, any reaction ~γ + ~p → Yc +D0(D∗) (with circularly polarized photons and polarized target) is
described by two different asymmetries and the dependence of the differential cross section on the polarization states
of the colliding particles can be parametrized as follows (taking into account the P-invariance of the electromagnetic
interaction of charmed particles) 2:

dσ

dΩ
(~γ~p) =

(

dσ

dΩ

)

0

(1− λTxAx − λTzAz) , (5)

where λ = ±1 is the photon helicity, Tx and Tz are the possible components of the proton polarization ~T , Ax and
Az are the two independent asymmetries. Due to the T-even nature of these asymmetries, they are non vanishing in
ELA consideration, where the photoproduction amplitudes fi are real. These asymmetries are nonzero also for hard
QCD processes as PGF, γ +G→ c+ c, for collisions of polarized photons and gluons with definite helicities [11].
After summing over the Yc-polarizations, one finds the following expressions for the asymmetries Ax and Az in

terms of the scalar amplitudes fi:

AxN0 = sinϑRe [−f1f
∗
3 + f2f

∗
4 + cosϑ(−f1f

∗
4 + f2f

∗
3 )] , (6)

AzN0 = Re[|f1|
2 + |f2|

2 − 2 cosϑf1f
∗
2 + sin2 ϑ (f1f

∗
4 + f2f

∗
3 )]. (7)

Note that Ax vanishes at ϑ = 00 and ϑ = π. Moreover Az = 1, for ϑ = 00 and ϑ = π, for any photon energy. This is a
model independent result, which follows from the conservation of helicity in collinear kinematics. It is correct for any
dynamics of the process, its physical meaning is that the collision of γ and p with parallel spins can not take place
for collinear regime (Fig. 1). This result holds for any process of pseudoscalar and scalar meson photoproduction
on a nucleon target (if the final baryon has spin 1/2). Such independence on the P-parity of produced mesons is
important.
For ϑ 6= 0 and ϑ 6= π the results for Ax and Az are model dependent. The models of photon-gluon fusion predict

a value for the Az-asymmetry for the inclusive ~γ + ~p → D0 +X process ≤ 30%, at Eγ ≃ 50 GeV, depending on the
assumptions on the polarized gluon distribution, ∆G(x). Therefore, even a 10 % contribution of the exclusive process

2 Note that we consider here only two-spin correlations, neglecting in particular T-odd analyzing power, induced by the Py component of
the target polarization.
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λ  = −1/2λ=1 λ(Λ  )=1/2p c
=

FIG. 1: Conservation of helicity in ~γ + ~p → Λc +D0, in collinear regime.

~γ+ ~p→ Λ+
c +D0 to the inclusive D-cross section can induce a large correction to the photon-gluon fusion asymmetry,

at forward angles. This should be taken into account in the extraction of ∆G from the asymmetry in the process
~γ + ~p→ D0 +X . Evidently the processes here considered, γ + p→ Yc +D0 do not contribute to the D0 production

in the inclusive reaction ~γ + ~N → D0 +X .

D. Λc-polarization in ~γ +N → ~Λc +D

In a similar way it is possible to consider the polarization properties of the final Λ+
c hyperon induced by the initial

circular polarization of the photon. Again, due to the P-invariance of the electromagnetic hadron interaction, only
the Px and Pz-components do not vanish. In terms of the scalar amplitudes fi, defined above, the components of the
Λ+
c polarization can be written as:

PxN0 = λ sinϑRe
[

−2f1f
∗
2 − f1f

∗
3 + cosϑ

(

2|f2|
2 + f2f

∗
3 − f1f

∗
4

)

+ (2 cos2 ϑ− 1)f2f
∗
4

]

,

PzN0 = λ Re
[

|f1|
2 − (1− 2 cos2 ϑ)|f2|

2 − 2 cosϑf1f
∗
2+

sin2 ϑ(f1f
∗
4 − f2f

∗
3 − 2 cosϑf2f

∗
4 )
]

. (8)

Comparing Eqs. (6), (7) and Eq. (8) one can see that the observables Ax and Az, on one side, and Px and Pz on
another side, are independent in the general case of non-collinear kinematics and contain different physical information.
Note also that Pz = 1, in case of collinear kinematics ( cosϑ = 1), independently on the model, taken to describe the

scalar amplitudes fi. This rigorous result follows from the conservation of the total helicity in γ+ p→ Λ+
c (Σ

+
c )+D0,

which holds in collinear kinematics. It means that only collisions with particles with antiparallel spins in the entrance
channel are allowed (see Fig. 1) i.e. the final Λc hyperon is polarized along the direction of the spin of the initial
photon. This result holds for any Yc +D-final state independently on the P-parity of the NΛcD-system.
At ϑ = 00 or ϑ = π, the observable Px vanishes. This follows from the axial symmetry of the collinear kinematics,

where only one physical direction can be defined (along the z-axis). In such kinematical conditions the x- and y− axis
are arbitrary, therefore Px = Ax = 0. It is a very general result, also independent on the relative P-parity P(NΛcD).
In non-collinear kinematics, the behavior of Px and Pz can be predicted only in framework of a model.
The measurement of the Λ+

c -polarization can be done similarly to the strange Λ0 hyperon, because the Λ+
c , being the

lightest charm baryon, can decay only through the weak interaction. However the Λ+
c decays through many channels

with different branching ratios and analyzing powers. Let us mention the two particle decay Λ+
c → Λc + π+, which

has a large decay asymmetry, A = 0.98± 0.19, but a relatively small branching ratio, B(Λπ) = (9.0± 2.8)10−3. The
semileptonic Λ+

c decay: Λ+
c → Λ0 + e+ + νc is characterized by a larger branching ratio, B(Λeν) = (2.1± 0.6)%, with

relatively large decay asymmetry (in absolute value): A = −0.82+0.11
−0.007 [35]. Note that the possibility to measure the

Λ+
c -polarization has been experimentally confirmed in hadronic collisions [36]. It is not the case for the Σc-hyperon.

Its main decay, Σc → Λc + π, is due to the strong interaction. So, whereas the Λ+
c is a self-analyzing particle, the Σc

is similar, in this respect, to any baryon resonance, with strong or electromagnetic decays.

E. Depolarization coefficients

Let us consider for completeness other two-spin polarization observables, the coefficients of polarization transfer
Dab, from a polarized proton target to a Λc-hyperon, which can be defined as

N0Dab =
1

2
TrF~σ · ~aF†~σ ·~b.
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The index a, a = m,n, k refers to the component of the proton polarization, whereas the index b, b = m,n, k refers to

the component of the Λc polarization. The unit vectors ~̂m, ~̂n, and ~̂k are defined as follows: ~̂k = ~k/|~k|, ~̂n = ~k×~q/|~k×~q|,

~̂m = ~̂n× ~̂k.
Only five among these coefficients are nonzero (for unpolarized photons):

N0Dmm =
sin2 ϑ

2
Re

[

(2 sin2 ϑ− 1)|f4|
2 − |f3|

2 + 2 + f1f
∗
4 − 2f2f

∗
3 − 2 cosϑ(2f2f

∗
4 − f3f

∗
4 )
]

N0Dnn = −
sin2 ϑ

2
Re

[

|f3|
2 + |f4|

2 + 2(f1f
∗
4 + f2f

∗
3 + cosϑf3f

∗
4 )
]

N0Dkk = −Re

{

|f1|
2 + (1− 2 cos2 ϑ)|f2|

2 + 2 cosϑf1f
∗
2 +

sin2 ϑ

2

[

|f3|
2 + (2 cos2 ϑ− 1)|f4|

2+

2(f2f
∗
3 − f1f

∗
4 + cosϑ(2f2f

∗
4 + f3f

∗
4 )]} , (9)

N0Dmk = sinϑRe [sin2 ϑ(cosϑ|f4|
2 + f3f

∗
4 ) + 2f1f

∗
2 + f1f

∗
3 + (1− 2 cos2 ϑ) f2f

∗
4 +

cosϑ(−2|f2|
2 + f1f

∗
4 − f2f

∗
3 ],

N0Dkm = sinϑRe [sin2 ϑ(cosϑ|f4|
2 + f3f

∗
4 ) + cosϑ(f1f

∗
4 − f2f

∗
3 ) + f1f

∗
3 +

(1− 2 cos2 ϑ)f2f
∗
4 ].

Note that Dkm 6= Dmk, because the process γ+N → Yc+D is asymmetrical with respect to initial and final baryons, so
these coefficients contain different information about the amplitudes fi and therefore about the reaction mechanisms.
Comparing Eqs. (4) and (9) one can see that ΣB=Dnn. This relation is valid in the general case, for any kinematical

condition and any choice of the reaction mechanism. In case of positive relative P-parity of the D-meson with respect
to the NΛc-system, P(NΛcD), we find, instead, ΣB = −Dnn. Therefore we can write ΣB = −P(NΛcD)Dnn and
suggest a possible and model independent method to measure P(NΛcD), through the test of the relative sign of these
two observables.

III. DISCUSSION OF THE REACTION MECHANISMS

The charm particle photo and electroproduction at high energy is usually interpreted in terms of photon-gluon fusion,
γ + G → c + c (Fig. 2a). Near threshold, another possible mechanism, based on the subprocess q + q → G → c + c
(Fig. 2b) should also be taken into account, as it was done for πN -collisions [37]. In case of exclusive reactions,
γ + N → Yc + Dc (D∗

c ), Yc = Λc,Σc, the mechanism in Fig. 2b is equivalent to the exchange of a cq-system, in
t-channel (Fig. 2c). The importance of the annihilation mechanism for the explanation of forward charge asymmetry
in γp-collisions, has been investigated in [38]. So, one can find the mesonic equivalent of such exchange, i.e. the
exchange by pseudoscalar Dc and (or) vector D∗

c mesons, in the t-channel of the considered reaction.
To move further, one has to take into account the symmetry property of electromagnetic hadronic interaction, such

as the conservation of electromagnetic current or the gauge invariance. This makes the principal difference between
γN and πN production of charmed particles. If in case of D∗ exchange in γ + N → Yc + Dc the corresponding
matrix element is gauge invariant, for any kinematical conditions and any values of the coupling constants, due to
the magnetic dipole transition in the vertex D∗ → D + γ, it is not the case for the pseudoscalar D− exchange in the
reaction γ + p → Σ++

c +D−, for example. The D− exchange alone can not satisfy the gauge invariance, therefore
other mechanisms have to be added, such as baryonic exchanges in s- and u-channels (Fig. 3).
Note that only the sum of s, t, and u exchanges gives a gauge invariant total matrix element for γ +N → Yc +D.

More exactly this holds for pseudoscalar interaction in the vertex N → Yc + Dc. In case of pseudovector vertex,
which can also be considered, the gauge invariance is insured by additional contribution of the so-called ’catastrophic’
(contact) diagram, (Fig. 4), which has a definite spin structure and a known coupling constant, gNYcD

3.
Following the equivalence theorem, both these approaches result in the same matrix element for the ’electric’

interaction, induced by the electric charges of the participating hadrons. But the magnetic moments of the nucleons
and the Yc hyperons produce different results for pseudoscalar and pseudovector interactions, showing the relevance
of off-mass shell effects in the considered model. Of course, the magnetic moments of baryons can not violate the
gauge invariance for any numerical value and in any kinematical condition.

3 Note, in this respect, that the direct estimation of this contact contribution to the cross section of the process γ + p → Σ++
c +D

−
c [39]

results in a too large cross section in the near threshold region, in contradiction with the experimental data [40].
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(a)

(b)

(c)

FIG. 2: Feynman diagrams for associative charm production in γN-collisions: (a) the subprocess of photon-gluon fusion

γ+G → c+c; (b) the subprocess of q+q-annihilation, q+q → c+c; (c) t−channel exchange byD andD
∗
for γ+N → Yc+D(D∗).

To take into account the virtuality of the exchanged hadrons, in this approach, form factors (FFs) are introduced
in the pole diagrams. For baryonic exchange the corresponding FFs can be parametrized as [41]:

FN (s) =
Λ4
N

Λ4
N + (s−m2)2

, FY (u) =
Λ4
Y

Λ4
Y + (u−M2)2

, (10)

where ΛN and ΛY are the corresponding cut-off parameters, s = (k + p1)
2, u = (k − p2)

2, k, p1 and p2 are the
four-momenta of the photon, the nucleon, and the hyperon, respectively, m (M) is the nucleon (hyperon) mass.
For mesonic exchanges, another expression of FFs is taken:

FD(t) =
Λ2
1γ −m2

D

Λ2
1γ − t

Λ2
1 −m2

D

Λ2
1 − t

, FD∗(t) =
Λ2
2γ −m2

D∗

Λ2
2γ − t

Λ2
2 −m2

D∗

Λ2
2 − t

, (11)

where t = (k − q)2 = (p1 − p2)
2, mD (m∗

D) is the mass of D (D∗) meson, Λ1,2γ are the cutoff parameters for the
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(b)(a)
FIG. 3: Baryon exchanges in s-channel: (a), and u-channel: (b), for the process γ +N → Yc +D.

FIG. 4: The catastrophic diagram for γ +N → D + Yc for the pseudovector NYcD-interaction.

electromagnetic vertex, γ + DV (D
∗
V ) → D, with virtual D(D∗) meson and Λ1,2 are the cutoff parameters for the

strong vertex N → Yc + DV (D
∗
V ). All these form factors are normalized such that FN (s = m2) = FY (u = M2) =

FD(t = m2
D) = FD∗(t = m2

D∗) = 1.
Only for the magnetic contributions these expressions of FFs do not destroy the gauge invariance of the total matrix

elements. Once these FFS, which are different for different diagrams, are introduced, the other contributions, induced
by the electric charges of the particles, will be rearranged in such a way that the gauge invariance is strongly violated.
The simplest way to restore the gauge invariance is to multiply the complete matrix element (for s+t+u-contributions)
by a common factor [41]:

1

3
[FN (s) + FY (u) + FD(t)] , for γ +N → Yc +D−,

1

2
[FN (s) + FY (u)] , for γ +N → Yc +D0.

Such term is a function of both independent kinematical variables, therefore it can not be rigorously called a form
factor, which must be, in general, function of one variable only.
These terms decrease essentially the differential cross section, at large values of |t| or |u|, and therefore the total cross

section, especially in the near threshold region. The role of FFs is essential for such approach, as it has been proved in
the analysis of vector meson or strange particle production in NN– and ∆N–collisions [42]. Particularly large effects
appear for the processes of open charm production in exclusive reactions, such as N + N → Yc + D + N [43, 44].
But polarization phenomena are, in principle, less sensitive to FFs. Moreover, in the limiting case of s + u + t(D)
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contributions (without D∗) or only vector D∗-exchange, one can see that polarization observables are independent on
any phenomenological FFs, for any kinematics. Such models can generate only T−even polarization observables, such
as ΣB-asymmetry, induced by linearly polarized photons, or Ax,z-asymmetries, induced by the collision of circularly
polarized photons with a polarized proton target.

IV. THE MATRIX ELEMENTS FOR γ +N → Yc +Dc, Yc = Λc,Σc

Let us consider in detail the matrix elements for the reactions of γ + N → Yc +Dc Yc = Λc,Σc, considering s, u
and t(D +D∗) contributions:

M = Ms +Mu +Mt(D) +Mt(D
∗).

For the pseudoscalar NDcYc vertex, the matrix element for one-nucleon exchange in s-channel, Ms, can be written
as follows:

Ms =
egNYcD

s−m2
u(p2)γ5

(

p̂1 + k̂ +m
)

(

QN ǫ̂− κN
ǫ̂k̂

2m

)

u(p1), (12)

where κN is the anomalous magnetic moment of the nucleon, gNYcD is the coupling constant for the vertexN → Yc+D,
QN is the electric charge of the nucleon. We assume, in Eq. (12) (and later on in this paper), that the relative P-parity
of the NDYc system is negative, in agreement with the quark model. In principle, this P-parity can be experimentally
determined [45].
The other matrix elements can be written as:

Mu =
egNYcD

u−m2
u(p2)

(

QYc
ǫ̂− κYc

ǫ̂k̂

2M

)

(

p̂2 − k̂ +M
)

γ5u(p1), (13)

Mt(D) =
egNYcD

t−m2
D

QDu(p2)γ5u(p1)2ǫ · q, (14)

Mt(D
∗) = i

egNYcD∗

t−m2
D∗

gD∗Dγ

mD∗

ǫµναβǫµkνJα(k − q)β ,

(15)

where QYc
and QD are the electric charges of the Yc-hyperon and of the D meson, so that QN = QYc

+QD, ǫν is the
four-vector of photon polarization, Jα is the vector current for the vertex N → Yc +D∗:

Jα = u(p2)

[

γα(1 + κYc
)− κYc

p1α + p2α
m+M

]

u(p1), (16)

where gNYcD∗ and κYc
gNYcD∗ are the vector (Dirac) and the tensor (Pauli) coupling constants for the vertexD∗N → Yc

and gD∗Dγ is the coupling constant for the vertex D∗ → Dγ. The corresponding width Γ(D∗ → Dγ) in terms of
gD∗Dγ can be written as follows:

Γ(D∗ → Dγ) =
α

24
mD∗

(

1−
m2

D

m2
D∗

)3

g2D∗Dγ , α =
e2

4π
≃

1

137
.

From the experimental data about D∗+ decays [35]:

Γ(D∗+) = (96± 4± 22) keV, Br(D∗ → Dγ) = (1.68± 0.42± 0.49)%

one can find: |gD∗+D+γ | = 1.03. The sign of this constant can not be determined from these data. The situation with
the coupling gD∗0D0γ is less definite. Having the largest branching ratio, Br(D∗0 → D0γ) ≃ 40% , only the upper
limit is experimentally known for the total width of neutral D∗0: Γ(D∗0) ≤ 2.1 MeV [35] i.e Γ(D∗0 → D0γ) ≤ 840
keV, i.e. very far from the theoretical predictions [46], with Γ(D∗0 → D0γ) ≥ 10 keV.
The expressions for the scalar amplitudes fi, corresponding to the different matrix elements (12-15), are given in

the Appendix.
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V. DISCUSSION OF THE RESULTS

The main ingredients of the considered model, which enter in the numerical calculations of the different observ-
ables for the exclusive process γ + N → Yc + D, are the strong and electromagnetic coupling constants and the
phenomenological form factors.

A. The electromagnetic coupling constants

The electromagnetic characteristics of the charmed particles, as the magnetic moments of the Yc-hyperon and the
gD∗Dγ-coupling constants (transition magnetic moments) are not well known. Only the width of the radiative decay
D∗+ → D+ + γ (which allows to derive the corresponding coupling constant gD∗+D+γ) has been directly measured,
but not its sign. The magnetic moments of the charmed hyperons and the transition magnetic moment gD∗0D0γ are
not experimentally known.
Based on the previous experience with the theoretical description of the magnetic moments of strange hyperons

and of the transition magnetic moments of V → P + γ (with V = ρ, ω, φ, K∗ vector and P = π, η, K pseudoscalar
light mesons), one can assume that predictions from symmetry considerations may work in this region of hadron
electromagnetic interaction.
We will use different theoretical approach to extrapolate these quantities to charm particle electrodynamics, in

particular to the magnetic moments of Yc and to the amplitude of the radiative decay D∗ → D + γ. Quark models,
SU(4)-symmetry, QCD dispersion sum rules and effective chiral theories with heavy quarks can also give useful
guidelines.
The dependence on the magnetic moments of the charmed baryons has been studied in [9]. Here, for all the

calculations, we take the Λ+
c values from [47], but for the Σc-hyperons we take the U(4)-predictions [8]:

µ(Σ++
c ) =

2

3
µp, µ(Σ

+
c ) = 0, µ(Σ−

c ) = −
2

3
µp.

B. Strong coupling constants

We call strong coupling constants those which involve one nucleonic vertex, gNYcD
, gNYcD∗

, and κYc
, Yc = Λc or

Σc. Six coupling constants enter in the calculation of the different observables (three for γ +N → Λc +D and three
for γ + N → Σc + D) and of their Eγ and cosϑ dependences, for all the possible exclusive reactions of associative

charm particle photoproduction, γ +N → Yc +D.
Note that the same coupling constants enter in the description of charmed particle production in πN– collisions:

π + N → Yc +D, NN–collisions: N + N → N + Yc +D and in the interaction of charmed particles with nuclei in
heavy ion collisions, D +N → Yc + P (V ), Yc +N → N +N +D etc.
The lack of experimental data about these processes do not allow to fix these coupling constants. Therefore the

typical way to estimate these couplings is to rely on SU(4) symmetry, and connect the necessary coupling constants
with the corresponding constants for strange particle production:

gNΛ(Σ)K , gNΛ(Σ)K∗ , κNΛ(Σ)K∗ , (17)

taking into account that the strange quark is the heaviest of the three light quarks (u, d, s), and the charmed quark
is the lightest of the three heavy quarks (c, b, t).
The coupling constants (17) for strange particles, have been estimated from several experiments in photo- and

electroproduction of strange particle on nucleons, γ +N → Λ(Σ) +K and e− +N → e− + Λ(Σ) +K [48]. However,
different models predict different sets of constants (17), which can take values in a wide interval.
This gives, nevertheless, a starting point of our analysis, applying SU(4) symmetry. We have also to keep in mind

that SU(4) symmetry can be strongly violated, at least at the scale of difference in masses of charmed and strange
particles (induced by the difference in masses of c and s quarks).

C. Phenomenological form factors

In order to determine the form factors, one has to choose a convenient analytical parametrization and then numerical
values for the cut-off parameters: ΛN , Λ1,2, and Λ1,2γ . Generally one takes a monopole, dipole or exponential
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dependence on the momentum transfer. One possibility is to choose as argument of these form factors the four-
momentum transfer squared, but one can also take the three-momentum transfer, as well. In this last case, the
corresponding reference frame has to be indicated.
The numerical values of the cut-off parameters can be determined from the previous experience in the interpreta-

tion of other photoproduction and hadroproduction processes, in framework of the ELA approach. In the present
calculations we use the parametrizations for the corresponding form factors, following Eqs. (10) and (11).

D. Three possible scenarios

Summarizing the previous discussion, one can conclude that SU(4) symmetry gives some guidelines to fix the
necessary parameters of the calculation (strong coupling constants and Yc magnetic moments). Note that not only
the absolute values of these couplings are important in our considerations, but also their relative signs, due to the
strong interference effects between the different contributions. The relative signs of s-, u- and t(D)-contributions to
the matrix element of any exclusive process γ+N → Yc+D are uniquely fixed by the requirement of gauge invariance.
But it is not the case for the relative sign of D∗ contribution, so one must do some assumptions, as the validity of
SU(6)-symmetry. It is important to stress that such symmetry consideration is very powerful for the prediction of
relative signs, in contrast with the predictions of the absolute values for the considered couplings.
Any fitting procedure induces a strong correlation between the values of the cut-off parameters and of the strong

coupling constants. Therefore there is no unique solution, and we will consider three possible scenarios.

1. The strong coupling constants are fixed by SU(4)-symmetry, using the corresponding values for the strange
coupling constants (17), found in the analysis of experimental data [48] on associative strange particles photo-
and electroproduction. Only the cut-off parameters are fixed on the charm photoproduction data. We assume
for simplicity:

Λ1 = Λ2 = Λ1γ = Λ2γ ≡ Λ, ΛY = ΛN .

2. We assume that SU(4)-symmetry is strongly violated for the strong coupling constants. So we take for the
couplings (17) some arbitrary values, far from SU(4)-predictions, and both cut-off parameters, Λ and ΛN , are
determined from charm photoproduction data.

3. We assume that SU(4)-symmetry is violated only for the N → Λc + D
∗
-vertex, but for the couplings g1 and

g2 we take the SU(6) values of the corresponding coupling constants for the vertex N → Λ + K∗. Again the
parameters ΛN and Λ are fixed from charm photoproduction data at Eγ=20 GeV.

Taking into account the limited experimental data about charm particles photoproduction, one can not do a rigorous
fit for all the parameters of the model.
The model can predict the energy behavior of the total cross section for γ∗ +N → Yc +D (for proton and neutron

targets), for each of the three versions. Therefore we normalize the total cross section for γ+p→ Λ+
c +D0, which is the

largest from all the exclusive reactions γ+p→ Yc+D, to the measured cross section of open charm photoproduction at
Eγ = 20 GeV [6], where it was found that about 70 % of the total cross section can be attributed to γ+p→ Λ+

c +D0.
This condition constrains very strongly the parameters for all the three versions of the model, where this reaction has
the largest cross section.
The parameters are reported in Table I, where we used the following notations: g1 = gNΛcD∗ , g2 = gNΛcD∗κΛc

.

Model gNΛcD g1 g2 ΛN Λ

I -11.5 -23 -57.5 0.8 2.4

II -2. -2.5 -6. 1.6 3.4

III -2. -6. -22. 0.6 2.7

TABLE I: Parameters for models I, II, III, see text. The cut-off parameters ΛN and Λ are expressed in [GeV].

Our procedure is not a real fit, as we take into account only the low energy point, therefore we do not give any χ2

estimates of the quality of the model, in its three versions.
Once the parameters have been fixed, Table (I), one can predict all polarization observables not only for γ + p →

Λ+
c +D0 but also for any exclusive reaction γ + N → Y +

c +D. For the reactions with Σc-production, we take the
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FIG. 5: Eγ-dependence of the total cross section for photoproduction of charmed particles for model I. The curves correspond

to different reactions: γ + p → Λ+
c + D0 (solid line), γ + p → Σ++

c + D− (dashed line), γ + p → Σ+
c + D0 (dotted line),

γ + n → Λ+
c + D− (dot-dashed line), γ + n → Σ+

c + D− (thick solid line), γ + n → Σ0
c + D0 (thick dashed line). The data

correspond to the total charm photoproduction cross section from [1] (reverse triangle), [2] (square), [3] (asterisk), [4] (star),
[5] (triangles), [6] (circle),

following coupling constants: gNΣcD
=4.5, g1(NΣcD∗)=-g2(NΣcD∗)=-25, which correspond to the values of gNΣK

and gNΣK∗ , obtained form a fit to the experimental data about γ + p→ Σ0 +K+ and e+ p→ e+Σ0 +K+ [48]. For
the cutoff parameters we took the values ΛN = 0.8 and Λ=2.4 GeV, as for model I.
The energy dependence of the total cross section for the six exclusive processes γ +N → Yc +D, is very different,

in all the photon energy range, Fig. 5. For Eγ ≥ 40 GeV, the predicted energy dependence of the total cross
section becomes flat, up to Eγ = 250 GeV. One can conclude that, in this energy range, the simplest exclusive

photoproduction reactions γ + N → Y +
c + D contribute less than 10 % to the total cross section of open charm

photoproduction. This estimation does not contradict the existing experimental data and is in agreement with the
measured Λ/Λc asymmetry (in sign and value).
It is interesting to note that we have very large isotopic effects, i.e. a large difference in the absolute values and

behavior for the different channels, with different charges of the participating hadrons. This is an expected property of
ELA approach, because the relative values of s, u, and t-channel contributions are different for the different channels.
Note that the largest cross section on the neutron target belongs to the process γ+n→ Σ0

c +D0, the D− production
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FIG. 6: Eγ-dependence of the total cross section for the reaction γ + p → Λ+
c +D0 for for model I (solid line), II (dashed line)

and III (dotted line). The experimental points are from [6] (open circle), from [2] (open square), and from [4] (open star).

being essentially suppressed. Moreover, the D− production is also small in the γp interaction, γ + p → Σ++
c +D−,

in agreement with the experiment [2]. The total cross section as a function of the photon energy, for the reaction

γ + p→ Λ+
c +D0, is shown in Fig. 6, for the three sets of parameters.

E. Contribution to D/D asymmetries

Our aim here is to have a realistic view on general characteristics of the different reaction channels, for charm
photoproduction, in a region which is accessible by experiments. A large antiparticle/particle asymmetry, not ex-
plainable in terms of pQCD models, has been reported in the literature and numerical estimations of associative
charm photoproduction cross sections have been done in Refs. [2, 4, 6]. The values are reported as open symbols in
Fig. 6.
The observation of the D0/D0 or Λc/Λc asymmetry in γN -collisions is important in order to test the validity of
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the photon-gluon fusion mechanism. The discussed asymmetries are defined as:

A =
N(c)−N(c)

N(c) +N(c)
,

where N(c) [N(c)] is the number of corresponding charm particles (D or Λc) containing c(c)-quarks.

Note that the exclusive photoproduction of open charm in the processes γ +N → Yc +D D
∗
will result in D0/D0

and Λc/Λc asymmetry in γN -collisions (with unpolarized particles), increasing the D-production and decrasing the
Λc-production. Such asymmetries have been experimentally observed [49]. For example, the FOCUS experiment
found an asymmetry for Λc/Λc production of ≃ −(0.14± 0.02) at Eγ ≃ 180 GeV, demonstrating that Λ+

c -production

is more probable than Λc [50]. At similar energies the E687 experiment finds enhancement of D over D production
[51]. Very large (in absolute value) charm asymmetries have been observed also at Eγ=20 GeV, at SLAC [6]. Note

also that the SELEX collaboration presented results on the Λc/Λc–asymmetries for different hadronic processes: p,
π−, Σ− +N → Λ±

c +X [52]. Similar results have been presented by the Fermilab E791 collaboration [53]. This is in
contradiction with the model of photon-gluon fusion, which predicts symmetric Λc −Λc yields and can be considered
as an indication of the presence of other mechanisms. The exclusive processes, γ + N → Yc +Dc, discussed in this
paper, explain naturally such asymmetry.

F. Differential cross section and polarization observables

The prediction of the cosϑ–dependence of (dσ/dΩ)0, ΣB, Ax, Az, Px, and Pz , for the six processes γ+N → Yc+D
(Yc = Λ+

c , Σc ) - on proton and neutron targets, are shown in Figs. 7 and 8, for model I, at Eγ=15 GeV.
Note that, for any version of the considered model, the asymmetry ΣB is positive in the whole angular region, in

contradiction with the predictions of PGF [10] and in agreement with the SLAC data [6].
At the same energy, for the same reactions, with similar notations, the depolarization coefficients Dab are shown in

Figs. 9 and 10.
Polarization effects are generally large (in absolute value), characterized by a strong cosϑ-dependence, which results

from a coherent effect of all the considered pole contributions. Large isotopic effects (i.e. the dependence on the electric
charges of the participating hadrons) are especially visible in the cosϑ-distributions for all these observables.

The dependence of these observables on the version of the model, at Eγ=15 GeV, for the reaction γ+p→ Λ+
c +D0

is shown in Fig. 11. For the same reaction, the cosϑ-dependence of the individual s, u and t(D∗)-contributions to the
differential cross section and to the considered polarization observables, is shown in Fig. 12. This behavior is the same
for any version of the considered model, the difference appearing in the interference of the different contributions.
Fig. 13 shows the energy dependence (for model I) of the integrated Az(Eγ)-asymmetry, for ~γ + ~p → Λ+

c + D0,
which is defined as:

Az(Eγ) =

∫ +1

−1 N0Az(Eγ , cosϑ)d cosϑ
∫ +1

−1
N0d cosϑ

.

This asymmetry is large near threshold, taking its maximum value Az = +1 at threshold. It decreases with energy, due
to the facts that the cross section increases with energy and then flattens, whereas the t(D∗) contribution becomes
more important. The interference of the t(D∗)-channel with s– and u –channels essentially decreases the Az(Eγ)
asymmetry, outside collinear kinematics, where Az(Eγ) = +1 for all contributions.
For comparison, predictions for this observable in inclusive charm photoproduction are also shown. These calcula-

tions have been done in framework of standard QCD approach, assuming the PGF model (Fig. 2), doing the ratio of
the elementary cross sections for γ +G→ c+ c folded with the gluon distributions:

Acc
γN (Eγ) =

∆σcc
γN

σcc
γN

=

∫ 1

0 dx∆σ(ŝ)∆G(x)
∫ 1

0
dxσ(ŝ)G(x)

=

∫ 2MEγ

4m2
c

dŝ∆σ(ŝ)∆G(x)
∫ 2MEγ

4m2
c

dŝσ(ŝ)G(x)
, (18)

where G(x) [∆(G)(x)] is the unpolarized [polarized] gluon distribution in an unpolarized [polarized] proton and ŝ is
the invariant mass of the photon-gluon system and mc is the charm quark mass.
Several parametrizations exist for the G(x) and ∆G(x), but, if the unpolarized distribution, G(x), is quite well

constrained from the deep inelastic scattering (DIS) data, and, therefore, different calculations give similar results,
the polarized gluon distribution ∆G is poorly known. For illustration, G(x) and ∆G(x) taken from [24] (dashed line)
and from [26] model B (dotted line) and model C (dashed-dotted line) are shown in Fig. 13.
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FIG. 7: Differential cross section and polarization observables ΣB , Ax, Az, Px, and Pz, for the reactions: γ + p → Λ+
c +D0

(solid line), γ + p → Σ++
c +D− (dashed line) and γ + p → Σ+

c +D0 (dotted line), calculated for model I.

The predictions of the asymmetry Acc
γN(Eγ) strongly depend on the choice of ∆G(x). Moreover, the results are very

sensitive to the lower limit of the integral, i.e. to mc. The value of the charm quark mass (so called the current mass)
is known from studies of the charmonium properties [35], mc = (1.15 ÷ 1.35) GeV, but, for the gluon distribution,
values of mc in the range mc = (1.5 ÷ 1.7) GeV, are more often used. In the calculations we have assumed that
the fitting parameters for the functions G(x) and ∆G(x) have a weak mc-dependence, and we have taken for all
calculations mc = 1.5 GeV.
Due to the large value of Az(Eγ), we can conclude that the exclusive process of associative particle production,

γ + p → Λ+
c + D0, has to be taken into account as possible background for the extraction of the polarized gluon

distribution, ∆G(x,Q2) from the measurement of the Az-asymmetry in the inclusive process ~γ + ~N → charm +X .

The importance of exclusive processes γ + p → Y +
c +D, D

∗
in the estimation of the asymmetry Az in open charm

photoproduction has been mentioned earlier [54, 55].
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FIG. 8: Differential cross section and polarization observables ΣB , Ax, Az, Px, and Pz, for the reactions: γ + n → Λ+
c +D−

(solid line), γ + n → Σ+
c +D− (dashed line) and γ + n → Σ0

c +D0 (dotted line), calculated for model I.

VI. CONCLUSIONS

We calculated the differential and total cross sections for the exclusive processes γ+N → Yc+Dc. We also calculated
a set of T- and P-even polarization observables, such as the ΣB–asymmetry, induced by a linearly polarized photon
beam on an unpolarized nucleon target, the asymmetries Ax and Az , in the collisions of circularly polarized photons
with a polarized nucleon target, in the reaction (i.e, xz)-plane, the Px and Pz components of the Yc polarization, in
collisions of circularly polarized photons with unpolarized target.
In framework of the effective Lagrangian approach, we suggest a model for these processes on proton and neutron

targets. The gauge invariance of the charm particle electromagnetic interaction drove our choice of specific pole
diagrams. The necessary parameters of the model, such as the magnetic moments of the Yc hyperons and the strong

coupling constants (for the vertices N → Yc +D and N → Yc + D
∗
) have been determined from SU(4)-symmetry.

The phenomenological form factors, which are essential ingredients in this approach, have been taken in such a way
to conserve the gauge invariance of the model, for any value of the coupling constants and cut-off parameters, and for
any kinematical conditions.
The parameters of the suggested model, in particular the cut-off parameters for the meson and baryon exchanges,

were fixed in order to reproduce the value of the total cross section for γ+p→ Λ+
c +D

0
, at Eγ=20 GeV (the smallest
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FIG. 9: Depolarization coefficients Dab for the reactions: γ + p → Λ+
c +D0 (solid line), γ + p → Σ++

c +D− (dashed line) and

γ + p → Σ+
c +D0 (dotted line), calculated for model I.

energy where open charm photoproduction has been measured).
The existing experimental information does not allow to fix uniquely the parameters. Therefore, we considered

three versions of the suggested model, with different sets of coupling constants and cut-off parameters, which all
reproduce the cross section at Eγ=20 GeV.
We predicted the cosϑ-dependence of different polarization observables, which are, in principle, accessible now by

the running COMPASS experiment, for example.
Large isotopic effects in the energy and cosϑ-dependence of all these polarization observables, as well as the large

polarization effects (in absolute value) are a general property of the considered model.
The knowledge of the coupling constants and of the cut-off parameters, will be very useful also for any future

calculations of electroproduction of charm particles, e− +N → e− + Yc +D and for photo and electroproduction of
charmed vector mesons, γ+N → D∗+Yc, e

−+N → e−+D∗+Yc. The same constants enter also in the estimation of
YcD-associative production in neutrino-nucleon collisions, induced by neutral and weak currents and for the processes
π+N → N+Yc+D(D∗) and N+N → N +Yc+D(D∗). All these different processes can be calculated in framework
of ELA approach, in particular in the near threshold region.
Contributing for about 10 % to the total cross section of open charm photoproduction on nucleons (for 40 ≤ Eγ ≤

250 GeV), the exclusive process γ+p→ Λ+
c +D

0
has to be considered an important background in the interpretation
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FIG. 10: Depolarization coefficients Dab for the reactions: γ+n → Λ+
c +D− (solid line), γ+n → Σ+

c +D− (dashed line) and

γ + n → Σ0
c +D0 (dotted line), calculated for model I.

of possible polarization effects in the γ + N → X +charm processes. This refers especially to the Az asymmetry in

~γ + ~N → X +charm, which is considered as the most direct way to measure the gluon contribution to the nucleon
spin.
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VIII. APPENDIX

Here we give the expressions for the scalar amplitudes fi, i = 1− 4:

fi = fi,s + fi,u + fi,t(D) + fi,t(D
∗),
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FIG. 11: cos ϑ-dependence of the differential cross section, beam asymmetry ΣB , and polarization observables: Ax, Az, Px,
and Pz, for the reaction γ + p → Λ+

c +D0 for model I (solid line), II (dashed line) and III (dotted line).

where the indices s, u, and t correspond to s, u, and t channel contributions.

• s-channel:

f1,s = gNYcD
e

W +m

[

QN − (W −m)
κN
2m

]

,

f2,s = gNYcD
e

W +m

[

−QN − (W +m)
κN
2m

] |~q|

E2 +M
,

f3,s = f4,s = 0,

• u-channel :

f1,u = e
gNYcD

u−M2

{

QYc
(W −M)−

κc
2M

[

t−m2
D + (W −m)(W −M)

]

}

,
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FIG. 12: cos ϑ-dependence of the different contributions to the total amplitude for the differential cross section, the beam
asymmetry, ΣB , and the polarization observables: Ax, Az, Px and Pz, s-channel (solid line), u-channel (dashed line), D∗

t-channel (dotted line). The first contribution gives ΣB=0 and Az=1, in all kinematical range, because f3,s = f4,s = 0.

f2,u = −e
gNYcD

u−M2

|~q|

E2 +M

{

QYc
(W +M) +

κc
2M

[

t−m2
D + (W +m)(W +M)

]

} W −m

W +m
,

f3,u = e
gNYcD

u−M2
|~q|
W −m

W +m

[

2QYc
+ κc

W +m

M

]

,

f4,u = e
gNYcD

u−M2
(E2 −M)

[

−2QYc
+ κc

W −m

M

]

,

where W 2 = s, E2 = (s+M2 −m2
D)/(2W )

• t-channel (D-contribution):

f1,t(D) = f2,t(D) = 0,
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FIG. 13: Integrated Az(Eγ)–asymmetry for the reaction ~γ+~p → Λ+
c +D0 for ELA approach (solid line), for model I. Predictions

for the asymmetry Acc
γN (Eγ) for inclusive charm photoproduction calculated with Eq. 18, taking G(x) and ∆G(x) from [24]

(dashed line), from [26] model B (dotted line), and from [26] model C (dashed-dotted line), are also shown.

f3,t(D) = −2eQD
gNYcD

t−m2
D

|~q|
W −m

W +m
,

f4,u(D) = 2eQD
gNYcD

t−m2
D

(E2 −M),

• t-channel (D∗-contribution):

f1,t(D
∗) =

e

2
N (g1 + g2)

[

t−m2
D + 2(W −m)(W −M)

]

+
g2

m+M

[

−tW +mm2
D − 2(m+M)(W −m)(W −M)

]

,

f2,t(D
∗) = eN (g1 + g2)

W −m

W +m

|~q|

E2 +M

{

1

2

[

t−m2
D + 2(W +m)(W +M)

]
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+
g2

m+M

[

tW +mm2
D − 2(m+M)(W +m)(W +M)

]

}

,

f3,t(D
∗) = −eN|~q|(W −m)

[

g1 + g2 − g2
W +m

W −m

]

,

f4,t(D
∗) = −eN (W −m)(E2 +M)

[

g1 + g2 + g2
W −m

W +m

]

,

with

N =
gD∗Dγ

(t−m2
D∗)

1

mD∗

.
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