373 research outputs found
The maximum modulus of a trigonometric trinomial
Let Lambda be a set of three integers and let C_Lambda be the space of
2pi-periodic functions with spectrum in Lambda endowed with the maximum modulus
norm. We isolate the maximum modulus points x of trigonometric trinomials T in
C_Lambda and prove that x is unique unless |T| has an axis of symmetry. This
permits to compute the exposed and the extreme points of the unit ball of
C_Lambda, to describe how the maximum modulus of T varies with respect to the
arguments of its Fourier coefficients and to compute the norm of unimodular
relative Fourier multipliers on C_Lambda. We obtain in particular the Sidon
constant of Lambda
Quantum key distribution with entangled photons generated on demand by a quantum dot
Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication
Daylight entanglement-based quantum key distribution with a quantum dot source
Entanglement-based quantum key distribution can enable secure communication in trusted node-free networks and over long distances. Although implementations exist both in fiber and in free space, the latter approach is often considered challenging due to environmental factors. Here, we implement a quantum communication protocol during daytime for the first time using a quantum dot source. This technology presents advantages in terms of narrower spectral bandwidth-beneficial for filtering out sunlight-and negligible multiphoton emission at peak brightness. We demonstrate continuous operation over the course of three days, across an urban 270 m-long free-space optical link, under different light and weather conditions
Signatures of the Optical Stark Effect on Entangled Photon Pairs from Resonantly-Pumped Quantum Dots
Two-photon resonant excitation of the biexciton-exciton cascade in a quantum
dot generates highly polarization-entangled photon pairs in a
near-deterministic way. However, there are still open questions on the ultimate
level of achievable entanglement. Here, we observe the impact of the
laser-induced AC-Stark effect on the spectral emission features and on
entanglement. A shorter emission time, longer laser pulse duration, and higher
pump power all result in lower values of concurrence. Nonetheless, additional
contributions are still required to fully account for the observed below-unity
concurrence.Comment: 7 pages, 3 figure
Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa
The global shipping network facilitates the transportation and introduction of marine and terrestrial organisms to regions where they are not native, and some of these organisms become invasive. South Africa was used as a case study to evaluate the potential for shipping to contribute to the introduction and establishment of marine and terrestrial alien species (i.e. establishment debt) and to assess how this varies across shipping routes and seasons. As a proxy for the number of species introduced (i.e. 'colonisation pressure') shipping movement data were used to determine, for each season, the number of ships that visited South African ports from foreign ports and the number of days travelled between ports. Seasonal marine and terrestrial environmental similarity between South African and foreign ports was then used to estimate the likelihood that introduced species would establish. These data were used to determine the seasonal relative contribution of shipping routes to South Africa's marine and terrestrial establishment debt. Additionally, distribution data were used to identify marine and terrestrial species that are known to be invasive elsewhere and which might be introduced to each South African port through shipping routes that have a high relative contribution to establishment debt. Shipping routes from Asian ports, especially Singapore, have a particularly high relative contribution to South Africa's establishment debt, while among South African ports, Durban has the highest risk of being invaded. There was seasonal variation in the shipping routes that have a high relative contribution to the establishment debt of the South African ports. The presented method provides a simple way to prioritise surveillance effort and our results indicate that, for South Africa, port-specific prevention strategies should be developed, a large portion of the available resources should be allocated to Durban, and seasonal variations and their consequences for prevention strategies should be explored further. (Résumé d'auteur
Specialists in ancient trees are more affected by climate than generalists
Ancient trees are considered one of the most important habitats for biodiversity in Europe and North America. They support exceptional numbers of specialized species, including a range of rare and endangered wood-living insects. In this study, we use a dataset of 105 sites spanning a climatic gradient along the oak range of Norway and Sweden to investigate the importance of temperature and precipitation on beetle species richness in ancient, hollow oak trees. We expected that increased summer temperature would positively inïŹuence all wood-living beetle species whereas precipitation would be less important with a negligible or negative impact. Surprisingly, only oak-specialist beetles with a northern distribu- tion increased in species richness with temperature. Few specialist beetles and no generalist beetles responded to the rise of 4°C in summer as covered by our cli- matic gradient. The negative effect of precipitation affected more specialist species than did temperature, whereas the generalists remained unaffected. In summary, we suggest that increased summer temperature is likely to beneïŹt a few specialist beetles within this dead wood community, but a larger number of specialists are likely to decline due to increased precipitation. In addition, generalist species will remain unaffected. To minimize adverse impacts of climate change on this impor- tant community, long-term management plans for ancient trees are important
A multipair-free source of entangled photons in the solid state
Unwanted multiphoton emission commonly reduces the degree of entanglement of
photons generated by non-classical light sources and, in turn, hampers their
exploitation in quantum information science and technology. Quantum emitters
have the potential to overcome this hurdle but, so far, the effect of
multiphoton emission on the quality of entanglement has never been addressed in
detail. Here, we tackle this challenge using photon pairs from a
resonantly-driven quantum dot and comparing quantum state tomography and
second-order coherence measurements as a function of the excitation power. We
observe that the relative (absolute) multiphoton emission probability is as low
as () at the maximum
source brightness, values that lead to a negligible effect on the degree of
entanglement. In stark contrast with probabilistic sources of entangled
photons, we also demonstrate that the multiphoton emission probability and the
degree of entanglement remain practically unchanged against the excitation
power for multiple Rabi cycles, despite we clearly observe oscillations in the
second-order coherence measurements. Our results, explained by a theoretical
model that we develop to estimate the actual multiphoton contribution in the
two-photon density matrix, highlight that quantum dots can be regarded as a
multipair-free source of entangled photons in the solid state
Taming Volatile High Frequency Data with Long Lag Structure: An Optimal Filtering Approach for Forecasting
We propose a Bayesian optimal filtering setup for improving out-of-sample forecasting performance when using volatile high frequency data with long lag structure for forecasting low-frequency data. We test this setup by using real-time Swiss construction investment and construction permit data. We compare our approach to different filtering techniques and show that our proposed filter outperforms various commonly used filtering techniques in terms of extracting the more relevant signal of the indicator series for forecasting
A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot
A quantum-light source that delivers photons with a high brightness and a
high degree of entanglement is fundamental for the development of efficient
entanglement-based quantum-key distribution systems. Among all possible
candidates, epitaxial quantum dots are currently emerging as one of the
brightest sources of highly entangled photons. However, the optimization of
both brightness and entanglement currently requires different technologies that
are difficult to combine in a scalable manner. In this work, we overcome this
challenge by developing a novel device consisting of a quantum dot embedded in
a circular Bragg resonator, in turn, integrated onto a micromachined
piezoelectric actuator. The resonator engineers the light-matter interaction to
empower extraction efficiencies up to 0.69(4). Simultaneously, the actuator
manipulates strain fields that tune the quantum dot for the generation of
entangled photons with fidelities up to 0.96(1). This hybrid technology has the
potential to overcome the limitations of the key rates that plague current
approaches to entanglement-based quantum key distribution and
entanglement-based quantum networks. Introductio
Forgotten Plotlanders: Learning from the survival of lost informal housing in the UK.
Colin Wardâs discourses on the arcadian landscape of âplotlanderâ housing are unique documentations of the anarchistic birth, life, and death of the last informal housing communities in the UK. Today the forgotten history of âplotlanderâ housing documented by Ward can be re-read in the context of both the apparently never-ending âhousing crisisâ in the UK, and the increasing awareness of the potential value of learning from comparable informal housing from the Global South. This papers observations of a previously unknown and forgotten plotlander site offers a chance to begin a new conversation regarding the positive potential of informal and alternative housing models in the UK and wider Westernised world
- âŠ