48 research outputs found

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Observation of B(s)0→J/ψpp¯ decays and precision measurements of the B(s)0 masses

    Get PDF
    The first observation of the decays B 0 ( s ) → J / ψ p ¯ p is reported, using proton-proton collision data corresponding to an integrated luminosity of 5.2     fb − 1 , collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are B ( B 0 → J / ψ p ¯ p ) = [ 4.51 ± 0.40 ( stat ) ± 0.44 ( syst ) ] × 10 − 7 , B ( B 0 s → J / ψ p ¯ p ) = [ 3.58 ± 0.19 ( stat ) ± 0.39 ( syst ) ] × 10 − 6 . For the B 0 s meson, the result is much higher than the expected value of O ( 10 − 9 ) . The small available phase space in these decays also allows for the most precise single measurement of both the B 0 mass as 5279.74 ± 0.30 ( stat ) ± 0.10 ( syst )     MeV and the B 0 s mass as 5366.85 ± 0.19 ( stat ) ± 0.13 ( syst )     MeV

    Amplitude analysis of the B0 (s)! K0K0 decays and measurement of the branching fraction of the B0! K0K0 decay

    Get PDF
    The B0K0K0B^0 \to K^{*0} \overline{K}^{*0} and Bs0K0K0B^0_s \to K^{*0} \overline{K}^{*0} decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3fb1^{-1}. An untagged and time-integrated amplitude analysis of B(s)0(K+π)(Kπ+)B^0_{(s)} \to (K^+\pi^-)(K^-\pi^+) decays in two-body invariant mass regions of 150 MeV/c2/c^2 around the K0K^{*0} mass is performed. A stronger longitudinal polarisation fraction in the B0K0K0{B^0 \to K^{*0} \overline{K}^{*0}} decay, fL=0.724±0.051(stat)±0.016(syst){f_L = 0.724 \pm 0.051 \,({\rm stat}) \pm 0.016 \,({\rm syst})}, is observed as compared to fL=0.240±0.031(stat)±0.025(syst){f_L = 0.240 \pm 0.031 \,({\rm stat}) \pm 0.025 \,({\rm syst})} in the Bs0K0K0{B^0_s\to K^{*0} \overline{K}^{*0}} decay. The ratio of branching fractions of the two decays is measured and used to determine B(B0K0K0)=(8.0±0.9(stat)±0.4(syst))×107\mathcal{B}(B^0 \to K^{*0} \overline{K}^{*0}) = (8.0 \pm 0.9 \,({\rm stat}) \pm 0.4 \,({\rm syst})) \times 10^{-7}.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2019-004.html (LHCb public pages

    Search for Lepton-Universality Violation in B^{+}→K^{+}ℓ^{+}ℓ^{-} Decays.

    Get PDF
    A measurement of the ratio of branching fractions of the decays B^{+}→K^{+}μ^{+}μ^{-} and B^{+}→K^{+}e^{+}e^{-} is presented. The proton-proton collision data used correspond to an integrated luminosity of 5.0  fb^{-1} recorded with the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. For the dilepton mass-squared range 1.1<q^{2}<6.0  GeV^{2}/c^{4} the ratio of branching fractions is measured to be R_{K}=0.846_{-0.054}^{+0.060}_{-0.014}^{+0.016}, where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R_{K} to date and is compatible with the standard model at the level of 2.5 standard deviations

    Search for Lepton-Universality Violation in B + → K + ℓ + ℓ − Decays

    Get PDF
    A measurement of the ratio of branching fractions of the decays B + → K + μ + μ − and B + → K + e + e − is presented. The proton-proton collision data used correspond to an integrated luminosity of 5.0     fb − 1 recorded with the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. For the dilepton mass-squared range 1.1 < q 2 < 6.0     GeV 2 / c 4 the ratio of branching fractions is measured to be R K = 0.84 6 + 0.060 − 0.054 + 0.016 − 0.014 , where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R K to date and is compatible with the standard model at the level of 2.5 standard deviations

    Amplitude analysis of B-s(0) -> K-S(0) K-+/-pi(-/+) decays

    Get PDF
    The first untagged decay-time-integrated amplitude analysis of Bs0KS0K±πB^{0}_{s} \rightarrow K^{0}_{\textrm{S}} K^{\pm}\pi^{\mp} decays is performed using a sample corresponding to 3.03.0\,fb1^{-1} of pppp collision data recorded with the LHCb detector during 2011 and 2012. The data are described with an amplitude model that contains contributions from the intermediate resonances K(892)0,+K^{*}(892)^{0,+}, K2(1430)0,+K^*_2(1430)^{0,+} and K0(1430)0,+K^*_0(1430)^{0,+}, and their charge conjugates. Measurements of the branching fractions of the decay modes Bs0K(892)±KB^{0}_{s} \rightarrow K^{*}(892)^{\pm}K^{\mp} and Bs0K(892)0K0,K(892)0K0B^{0}_{s} \rightarrow K^{*}(892)^{0}\kern 0.2em\overline{\kern -0.2em K}{}^{0}, \kern 0.2em\overline{\kern -0.2em K}{}^{*}(892)^{0}K^{0} are in agreement with, and more precise than, previous results. The decays Bs0K0(1430)±KB^{0}_{s} \rightarrow K^*_0(1430)^{\pm} K^{\mp} and Bs0K0(1430)0K0,K0(1430)0K0B^{0}_{s} \rightarrow K^{*}_{0}(1430)^{0}\kern 0.2em\overline{\kern -0.2em K}{}^{0}, \kern 0.2em\overline{\kern -0.2em K}{}^{*}_{0}(1430)^{0}K^{0} are observed for the first time, each with significance over 10 standard deviations.Comment: 27 pages, 14 figures. All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-045.htm

    Search for Lepton-Universality Violation in B + → K + ℓ + ℓ − Decays

    Get PDF
    A measurement of the ratio of branching fractions of the decays B + → K + μ + μ − and B + → K + e + e − is presented. The proton-proton collision data used correspond to an integrated luminosity of 5.0     fb − 1 recorded with the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. For the dilepton mass-squared range 1.1 < q 2 < 6.0     GeV 2 / c 4 the ratio of branching fractions is measured to be R K = 0.84 6 + 0.060 − 0.054 + 0.016 − 0.014 , where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R K to date and is compatible with the standard model at the level of 2.5 standard deviations

    Measurement of the electron reconstruction efficiency at LHCb

    Get PDF
    The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb−1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+→ J/ψ(e+e−)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%

    Centrality, rapidity and transverse momentum dependence of J/\u3c8 suppression in Pb-Pb collisions at 1asNN= 2.76TeV

    Get PDF
    The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, significantly larger values of RAAare measured at forward-rapidity compared to measurements at lower energy. These features suggest that a contribution to the J/.yield originates from charm quark (re) combination in the deconfined partonic medium
    corecore