129 research outputs found

    QCD fits in diffractive DIS revisited

    Full text link
    A new method of extracting diffractive parton distributions is presented which avoids the use of Regge theory ansatz and is in much closer relation with the factorization theorem for diffarctive hard processes.Comment: proceeding to PHOTON11 conferenc

    Forward Jets and Energy Flow in Hadronic Collisions

    Full text link
    We observe that at the Large Hadron Collider, using forward + central detectors, it becomes possible for the first time to carry out calorimetric measurements of the transverse energy flow due to "minijets" accompanying production of two jets separated by a large rapidity interval. We present parton-shower calculations of energy flow observables in a high-energy factorized Monte Carlo framework, designed to take into account QCD logarithmic corrections both in the large rapidity interval and in the hard transverse momentum. Considering events with a forward and a central jet, we examine the energy flow in the interjet region and in the region away from the jets. We discuss the role of these observables to analyze multiple parton collision effects.Comment: 9 pages, 5 figures. Version2: added results on azimuthal distributions and more discussion of energy flow definition using jet clusterin

    Azimuthal and Single Spin Asymmetries in Hard Scattering Processes

    Get PDF
    In this article we review the present understanding of azimuthal and single spin asymmetries for inclusive and semi-inclusive particle production in unpolarized and polarized hadronic collisions at high energy and moderately large transverse momentum. After summarizing the experimental information available, we discuss and compare the main theoretical approaches formulated in the framework of perturbative QCD. We then present in some detail a generalization of the parton model with inclusion of spin and intrinsic transverse momentum effects. In this context, we extensively discuss the phenomenology of azimuthal and single spin asymmetries for several processes in different kinematical configurations. A comparison with the predictions of other approaches, when available, is also given. We finally emphasize some relevant open points and challenges for future theoretical and experimental investigation.Comment: 70 pages, 34 ps figures. Invited review paper to be published in Progress in Particle and Nuclear Physic

    Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering

    Get PDF
    First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.Comment: 13 pages, 4 figures, updated to the published versio

    Transverse Momentum Dependent (TMD) Parton Distribution Functions: Status and Prospects

    Get PDF
    We review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum qT spectra of Higgs and vector bosons for low qT, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMDLIB, to parton density fits and parameterizations

    Double parton correlations and constituent quark models: a light front approach to the valence sector

    Get PDF
    An explicit evaluation of the double parton distribution functions (dPDFs), within a relativistic Light-Front approach to constituent quark models, is presented. dPDFs encode information on the correlations between two partons inside a target and represent the non-perturbative QCD ingredient for the description of double parton scattering in proton-proton collisions, a crucial issue in the search of new Physics at the LHC. Valence dPDFs are evaluated at the low scale of the model and the perturbative scale of the experiments is reached by means of QCD evolution. The present results show that the strong correlation effects present at the scale of the model are still sizable, in the valence region, at the experimental scale. At the low values of x presently studied at the LHC the correlations become less relevant, although they are still important for the spin-dependent contributions to unpolarized proton scattering
    • …
    corecore