54 research outputs found

    Flavour physics constraints in the BMSSM

    Full text link
    We study the implications of the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM to flavour physics observables. We identify the constraints of flavour physics on the parameters of the BMSSM when we: a) focus on a region of parameters for which electroweak baryogenesis is feasible, b) use a CMSSM-like parametrization, and c) consider the case of a generic NUHM-type model. We find significant differences as compared to the standard MSSM case.Comment: 22 pages, 7 figure

    The decay Bs -> mu+ mu-: updated SUSY constraints and prospects

    Get PDF
    We perform a study of the impact of the recently released limits on BR(Bs -> mu+ mu-) by LHCb and CMS on several SUSY models. We show that the obtained constraints can be superior to those which are derived from direct searches for SUSY particles in some scenarios, and the use of a double ratio of purely leptonic decays involving Bs -> mu+ mu- can further strengthen such constraints. We also discuss the experimental sensitivity and prospects for observation of Bs -> mu+ mu- during the sqrt(s)=7 TeV run of the LHC, and its potential implications.Comment: 30 pages, 21 figures. v2: Improved discussion of constraints from B -> tau nu, references adde

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Supersymmetric Monojets at the Large Hadron Collider

    Get PDF
    Supersymmetric monojets may be produced at the Large Hadron Collider by the process qg -> squark neutralino_1 -> q neutralino_1 neutralino_1, leading to a jet recoiling against missing transverse momentum. We discuss the feasibility and utility of the supersymmetric monojet signal. In particular, we examine the possible precision with which one can ascertain the neutralino_1-squark-quark coupling via the rate for monojet events. Such a coupling contains information on the composition of the neutralino_1 and helps bound dark matter direct detection cross-sections and the dark matter relic density of the neutralino_1. It also provides a check of the supersymmetric relation between gauge couplings and gaugino-quark-squark couplings.Comment: 46 pages, 10 figures. The appendix has been rewritten to correct an error that appears in all previous versions of the appendix. This error has no effect on the results in the main body of the pape

    Flavor Physics in an SO(10) Grand Unified Model

    Get PDF
    In supersymmetric grand-unified models, the lepton mixing matrix can possibly affect flavor-changing transitions in the quark sector. We present a detailed analysis of a model proposed by Chang, Masiero and Murayama, in which the near-maximal atmospheric neutrino mixing angle governs large new b -> s transitions. Relating the supersymmetric low-energy parameters to seven new parameters of this SO(10) GUT model, we perform a correlated study of several flavor-changing neutral current (FCNC) processes. We find the current bound on B(tau -> mu gamma) more constraining than B(B -> X_s gamma). The LEP limit on the lightest Higgs boson mass implies an important lower bound on tan beta, which in turn limits the size of the new FCNC transitions. Remarkably, the combined analysis does not rule out large effects in B_s-B_s-bar mixing and we can easily accomodate the large CP phase in the B_s-B_s-bar system which has recently been inferred from a global analysis of CDF and DO data. The model predicts a particle spectrum which is different from the popular Constrained Minimal Supersymmetric Standard Model (CMSSM). B(tau -> mu gamma) enforces heavy masses, typically above 1 TeV, for the sfermions of the degenerate first two generations. However, the ratio of the third-generation and first-generation sfermion masses is smaller than in the CMSSM and a (dominantly right-handed) stop with mass below 500 GeV is possible.Comment: 44 pages, 5 figures. Footnote and references added, minor changes, Fig. 2 corrected; journal versio

    Impact of LHC Searches on NLSP Top Squark and Gluino Mass

    Full text link
    We explore the implications of 7 TeV LHC searches for a scenario in which one of the stops is the next-to lightest supersymmetric particle (NLSP). The NLSP stop (\tilde{t}_1) is assumed to decay exclusively into neutralino and charm quark. We consider processes where the stops are pair produced together with a hard QCD jet. We also consider stop quarks from gluino decays, \tilde{g}\to t\tilde{t}_1^\ast+\bar{t}\tilde{t}_1. We show that the monojet ATLAS and CMS searches corresponding to 1 fb^{-1} of integrated luminosity are sensitive to stop masses of up to 160 GeV, with the 20% neutralino-stop coannihilation region essentially ruled out for M_{\tilde{t}_1}\lesssim 140 GeV. The region M_{\tilde{t}_1}\lesssim 130 GeV is excluded with even relatively larger mass difference, M_{\tilde{t}_1}-M_{\tilde{\chi}_1^0}\sim 40 GeV, by the multi-jets search. The b-jet and same-sign dilepton searches are sensitive to a heavier gluino because they only pick up gluino pair production events followed by top quarks decaying into b-jets and same-sign dileptons, respectively. We find that the LHC data places a lower limit on the gluino mass in this scenario of about 600 GeV (700 GeV) from b-jets (same-sign dileptons) searches.Comment: 18 pages, 10 figures and 4 table

    Naturalness of the Non-Universal MSSM in the light of the recent Higgs results

    Get PDF
    We analyse the naturalness of the Minimal Supersymmetric Standard Model (MSSM) in the light of recent LHC results from the ATLAS and CMS experiments. We study non-universal boundary conditions for the scalar and the gaugino sector, with fixed relations between some of the soft breaking parameters, and find a significant reduction of fine-tuning for non-universal gaugino masses. For a Higgs mass of about 125 GeV, as observed recently, we find parameter regions with a fine-tuning of O(10), taking into account experimental and theoretical uncertainties. These regions also survive after comparison with simplified model searches in ATLAS and CMS. For a fine-tuning less than 20 the lightest neutralino is expected to be lighter than about 400 GeV and the lighter stop can be as heavy as 3.5 TeV. On the other hand, the gluino mass is required to be above 1.5 TeV. For non-universal gaugino masses, we discuss which fixed GUT scale ratios can lead to a reduced fine-tuning and find that the recent Higgs results have a strong impact on which ratio is favoured. We also discuss the naturalness of GUT scale Yukawa relations, comparing the non-universal MSSM with the CMSSM.Comment: 24 pages, 8 figures; version accepted for publication in JHE

    A 119-125 GeV Higgs from a string derived slice of the CMSSM

    Get PDF
    The recent experimental hints for a relatively heavy Higgs with a mass in the range 119-125 GeV favour supersymmetric scenarios with a large mixing in the stop mass matrix. It has been shown that this is possible in the constrained Minimal Super-symmetric Standard Model (CMSSM), but only for a very specific relation between the trilinear parameter and the soft scalar mass, favouring A ≈ −2m for a relatively light spectrum, and sizable values of tan β. We describe here a string-derived scheme in which the first condition is automatic and the second arises as a consequence of imposing radiative EW symmetry breaking and viable neutralino dark matter in agreement with WMAP constraints. More specifically, we consider modulus dominated SUSY-breaking in Type II string compactifications and show that it leads to a very predictive CMSSM-like scheme, with small departures due to background fluxes. Imposing the above constraints leaves only one free parameter, which corresponds to an overall scale. We show that in this construction A=−3/2–√m≃−2mA=−3/2m≃−2m and in the allowed parameter space tan β ≃ 38 − 41, leading to 119 GeV < mh  < 125 GeV. The recent LHCb results on BR(Bs → μ+μ−) further constrain this range, leaving only the region with mh ~ 125. GeV. We determine the detectability of this model and show that it could start being probed by the LHC at 7(8) TeV with a luminosity of 5(2) fb−1, and the whole parameter space would be accessible for 14 TeV and 25 fb−1. Furthermore, this scenario can host a long-lived stau with the right properties to lead to catalyzed BBN. We finally argue that anthropic arguments could favour the highest value for the Higgs mass that is compatible with neutralino dark matter, i.e., mh-125 GeV

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore