7,187 research outputs found
IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.)
Holographic Brownian Motion in Magnetic Environments
Using the gauge/gravity correspondence, we study the dynamics of a heavy
quark in two strongly-coupled systems at finite temperature: Super-Yang-Mills
in the presence of a magnetic field and non-commutative Super-Yang-Mills. In
the former, our results agree qualitatively with the expected behavior from
weakly-coupled theories. In the latter, we propose a Langevin equation that
accounts for the effects of non-commutativity and we find new interesting
features. The equation resembles the structure of Brownian motion in the
presence of a magnetic field and implies that the fluctuations along
non-commutative directions are correlated. Moreover, our results show that the
viscosity is smaller than the commutative case and that the diffusion
properties of the quark are unaffected by non-commutativity. Finally, we
compute the random force autocorrelator and verify that the
fluctuation-dissipation theorem holds in the presence of non-commutativity.Comment: 34 pages. v2: typos corrected. v3: title and abstract slightly
modified in order to better reflect the contents of the paper; footnote 3 and
one reference were also added; version accepted for publication in JHE
Effect of promoter architecture on the cell-to-cell variability in gene expression
According to recent experimental evidence, the architecture of a promoter,
defined as the number, strength and regulatory role of the operators that
control the promoter, plays a major role in determining the level of
cell-to-cell variability in gene expression. These quantitative experiments
call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect noise in gene expression in a
systematic rather than case-by-case fashion. In this article, we make such a
systematic investigation, based on a simple microscopic model of gene
regulation that incorporates stochastic effects. In particular, we show how
operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters
(cooperative, independent, simultaneous) and how each of these affects the
level of variability in transcription product from cell-to-cell. We propose
that direct comparison between in vivo single-cell experiments and theoretical
predictions for the moments of the probability distribution of mRNA number per
cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
Swift follow-up observations of candidate gravitational-wave transient events
We present the first multi-wavelength follow-up observations of two candidate
gravitational-wave (GW) transient events recorded by LIGO and Virgo in their
2009-2010 science run. The events were selected with low latency by the network
of GW detectors and their candidate sky locations were observed by the Swift
observatory. Image transient detection was used to analyze the collected
electromagnetic data, which were found to be consistent with background.
Off-line analysis of the GW data alone has also established that the selected
GW events show no evidence of an astrophysical origin; one of them is
consistent with background and the other one was a test, part of a "blind
injection challenge". With this work we demonstrate the feasibility of rapid
follow-ups of GW transients and establish the sensitivity improvement joint
electromagnetic and GW observations could bring. This is a first step toward an
electromagnetic follow-up program in the regime of routine detections with the
advanced GW instruments expected within this decade. In that regime
multi-wavelength observations will play a significant role in completing the
astrophysical identification of GW sources. We present the methods and results
from this first combined analysis and discuss its implications in terms of
sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25,
published 2012 November 21, in ApJS, 203, 28 (
http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables;
LIGO-P1100038; Science summary at
http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts
We outline the scientific motivation behind a search for gravitational waves
associated with short gamma ray bursts detected by the InterPlanetary Network
(IPN) during LIGO's fifth science run and Virgo's first science run. The IPN
localisation of short gamma ray bursts is limited to extended error boxes of
different shapes and sizes and a search on these error boxes poses a series of
challenges for data analysis. We will discuss these challenges and outline the
methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on
Gravitational Waves, July 2011, Cardiff, U
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
- …