863 research outputs found
Recent Decisions
ACT OF STATE--Act of State Doctrine Not a Bar to Adjudication of a Counterclaim
Robert M. Erickson
==========================
ADMIRALTY--Ship Mortgage Act of 1920--Deficiency Judgment against Mortgagor in Personam Not Precluded by State Law when Vessels were Sold at Public Foreclosure Auction without Prior Appraisal
Jack F. Stringham, II
===========================
ALIENS--Immigration and Naturalization--Restriction of Commuter Aliens\u27 Access to Domestic Employment by Attorney General is Abuse of Discretion
Alan Marchisotto
=================
EXTRADITION--Principle of Specialty--Specialty does not Preclude Prosecution for Similar Offense when Asylum Nation Would Not Consider it a Breach of Faith
Attorney General of the United States, 462 F.2d 475 (2d Cir. 1972),petition for cert. filed, 41 U.S.L.W. 3114 (U.S. Aug. 26, 1972) (No.332).
James T. Campbell
=========================
JURISDICTION--Forum Selection Clauses--United States Courts will Enforce Forum Selection Clauses in International Towage Contracts Absent Exceptional Circumstances
Ralph C. Oser
========================
TAXATION--Foreign Tax Credit--Foreign Income Tax Credit Under Section 901 Allowable Only for Taxes Imposed on Net Gain or Profit
David A. Boillo
Shallow Dark Matter Cusps in Galaxy Clusters
We study the evolution of the stellar and dark matter components in a galaxy
cluster of from to the present epoch using
the high-resolution collisionless simulations of Ruszkowski & Springel (2009).
At the dominant progenitor halos were populated with spherical model
galaxies with and without accounting for adiabatic contraction. We apply a
weighting scheme which allows us to change the relative amount of dark and
stellar material assigned to each simulation particle in order to produce
luminous properties which agree better with abundance matching arguments and
observed bulge sizes at . This permits the study of the effect of initial
compactness on the evolution of the mass-size relation. We find that for more
compact initial stellar distributions the size of the final Brightest Cluster
Galaxy grows with mass according to , whereas for more extended
initial distributions, . Our results show that collisionless
mergers in a cosmological context can reduce the strength of inner dark matter
cusps with changes in logarithmic slope of 0.3 to 0.5 at fixed radius. Shallow
cusps such as those found recently in several strong lensing clusters thus do
not necessarily conflict with CDM, but may rather reflect on the initial
structure of the progenitor galaxies, which was shaped at high redshift by
their formation process.Comment: 8 pages, 4 figures, submitted to MNRA
Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV
We describe a new search for diffuse ultrahigh energy gamma-ray emission
associated with molecular clouds in the galactic disk. The Chicago Air Shower
Array (CASA), operating in coincidence with the Michigan muon array (MIA), has
recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995.
We search for gamma rays based upon the muon content of air showers arriving
from the direction of the galactic plane. We find no significant evidence for
diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma
rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90%
confidence limit) from the galactic plane region: (50 degrees < l < 200
degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on
models for emission from molecular clouds in the galaxy. We rule out
significant spectral hardening in the outer galaxy, and conclude that emission
from the plane at these energies is likely to be dominated by the decay of
neutral pions resulting from cosmic rays interactions with passive target gas
molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3
Postscript figure
The ATLAS3D project - XXVI : H I discs in real and simulated fast and slow rotators
One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of H I with size from a few to tens of kpc and mass up to ∼109 M⊙. Here we investigate whether this H I is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of H I masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much H I and have a similar rate of H I discs/rings as FRs. Accretion of H I is therefore not always linked to the growth of an inner stellar disc. The weak relation between H I and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the H I is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that Λ CDM hydrodynamical simulations have difficulties reproducing the H I properties of ETGs. The gas discs formed in simulations are either too massive or too small depending on the star formation feedback implementation. Kinematical misalignments match the observations only qualitatively. The main point of conflict is that nearly all simulated FRs and a large fraction of all simulated SRs host corotating H I. This establishes the H I properties of ETGs as a novel challenge to simulationsPeer reviewedFinal Accepted Versio
Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope
We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in
the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector,
called CELESTE, used first 40, then 53 heliostats of the former solar facility
"Themis" in the French Pyrenees to collect Cherenkov light generated in
atmospheric particle cascades. The signal from Mrk 421 is often strong. We
compare its flux with previously published multi-wavelength studies and infer
that we are straddling the high energy peak of the spectral energy
distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain
an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab
flux near 100 GeV. The data analysis and understanding of systematic biases
have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 --
corrected error in author lis
The ATLAS3D project - XXV: Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators
We present a detailed two-dimensional stellar dynamical analysis of as ample of 44 cosmological hydrodynamical simulations of individual central galaxies with stellar masses of 2 x 1010Msun ∼≤ Mstar ∼≤ 6x 1011Msun. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion, and higher-order Gauss-Hermite moments h3 and h4 are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the λR-parameter. The velocity, velocity dispersion, h3, and h4 fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS3D survey. This includes fast (regular), slow, and misaligned rotation, hot spheroids with embedded cold disk components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present-day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a significant influence on the rotation properties resulting in both a spin-down as well as a spin-up of the merger remnant. Lower mass galaxies with significant in-situ formation of stars, or with additional gas-rich major mergers - resulting in a spin-up - in their formation history, form elongated fast rotators with a clear anti-correlation of h3 and v/σ. An additional formation path for fast rotators includes gas-poor major mergers leading to a spin-up of the remnants. This formation path does not result in anti-correlated h3 and v/σ. The galaxies most consistent with the rare class of non-rotating round early-type galaxies grow by gas-poor minor mergers alone. In general, more massive galaxies have less in-situ star formation since z ∼ 2, rotate slower and have older stellar populations. (shortened)PostprintPeer reviewe
Reduced LIMK2 expression in colorectal cancer reflects its role in limiting stem cell proliferation
Objective: Colorectal cancer (CRC) is a major contributor to cancer mortality and morbidity. LIM kinase 2 (LIMK2) promotes tumour cell invasion and metastasis. The objectives of this study were to determine how LIMK2 expression is associated with CRC progression and patient outcome, and to use genetically modified Drosophila and mice to determine how LIMK2 deletion affects gastrointestinal stem cell regulation and tumour development.<p></p>
Design: LIMK2 expression and activity were measured by immunostaining tumours from CRC-prone mice, human CRC cell lines and 650 human tumours. LIMK knockdown in Drosophila or Limk2 deletion in mice allowed for assessment of their contributions to gastrointestinal stem cell homeostasis and tumour development.<p></p>
Results: LIMK2 expression was reduced in intestinal tumours of cancer-prone mice, as well as in human CRC cell lines and tumours. Reduced LIMK2 expression and substrate phosphorylation were associated with shorter patient survival. Genetic analysis in Drosophila midgut and intestinal epithelial cells isolated from genetically modified mice revealed a conserved role for LIMK2 in constraining gastrointestinal stem cell proliferation. Limk2 deletion increased colon tumour size in a colitis-associated colorectal mouse cancer model.<p></p>
Conclusions: This study revealed that LIMK2 expression and activity progressively decrease with advancing stage, and supports the hypothesis that there is selective pressure for reduced LIMK2 expression in CRC to relieve negative constraints imposed upon gastrointestinal stem cells.<p></p>
Mass assembly of galaxies: Smooth accretion versus mergers
Galaxies accrete their mass by means of both smooth accretion from the cosmic
web, and the mergers of smaller entities. We wish to quantify the respective
role of these two modes of accretion, which could determine the morphological
types of galaxies observed today. Multi-zoom cosmological simulations are used
to estimate as a function of time the evolution of mass in bound systems, for
dark matter as well as baryons. The baryonic contents of dark matter haloes are
studied. Merger histories are followed as a function of external density, and
the different ways in which mass is assembled in galaxies and the stellar
component accumulated are quantified. We find that most galaxies assemble their
mass through smooth accretion, and only the most massive galaxies also grow
significantly through mergers. The mean fraction of mass assembled by accretion
is 77 %, and by mergers 23 %. We present typical accretion histories of
hundreds of galaxies: masses of the most massive galaxies increase
monotonically in time, mainly through accretion, many intermediate-mass objects
also experience mass-loss events such as tidal stripping and evaporation.
However, our simulations suffer from the overcooling of massive galaxies caused
by the neglect of active galaxy nuclei (AGN) feedback. The time by which half
of the galay mass has assembled, both in dark matter and baryons, is a
decreasing function of mass, which is compatible with the observations of a
so-called downsizing. At every epoch in the universe, there are low-mass
galaxies actively forming stars, while more massive galaxies form their stars
over a shorter period of time within half the age of the universe.Comment: A&A Accepted, 19 pages, 17 figure
- …