114 research outputs found

    Unravelling the diversity in water usage among wild banana species in response to vapour pressure deficit

    Get PDF
    The rise in global temperature is not only affecting plant functioning directly, but is also increasing air vapour pressure deficit (VPD). The yield of banana is heavily affected by water deficit but so far breeding programs have never addressed the issue of water deficit caused by high VPD. A reduction in transpiration at high VPD has been suggested as a key drought tolerance breeding trait to avoid excessive water loss, hydraulic failure and to increase water use efficiency. In this study, stomatal and transpiration responses under increasing VPD at the leaf and whole-plant level of 8 wild banana (sub)species were evaluated, displaying significant differences in stomatal reactivity. Three different phenotypic groups were identified under increasing VPD. While (sub)species of group III maintained high transpiration rates under increasing VPD, M. acuminata ssp. e rrans (group I), M. acuminata ssp. zebrina (group II) and M. balbisiana (group II) showed the highest transpiration rate limitations to increasing VPD. In contrast to group I, group II only showed strong reductions at high VPD levels, limiting the cost of reduced photosynthesis and strongly increasing their water use efficiency. M. acuminata ssp. zebrina and M. balbisiana thus show the most favourable responses. This study provides a basis for the identification of potential parent material in gene banks for breeding future-proof bananas that cope better with lack of water

    Internet Sexual Offending: Overview of Potential Contributing Factors and Intervention Strategies

    Get PDF
    As Internet accessibility and use increase dramatically, more and more people are turning to it for sexual purposes. This growing use of the Internet for sexual purposes indicates that the proportion of Internet sexual offences also will continue to rise dramatically. This article examines the impact of Internet problematic behaviours on the potential for recidivism among online sexual offenders. It argues for specialised treatment for these offenders whilst providing an overview of approaches that are currently used in other areas to treat problematic behaviours and how they could be used in the treatment of Internet sexual offenders. © 2013 Copyright Taylor and Francis Group, LLC

    Unravelling the diversity in water usage among wild banana species in response to vapour pressure deficit

    Get PDF
    The rise in global temperature is not only affecting plant functioning directly, but is also increasing air vapour pressure deficit (VPD). The yield of banana is heavily affected by water deficit but so far breeding programs have never addressed the issue of water deficit caused by high VPD. A reduction in transpiration at high VPD has been suggested as a key drought tolerance breeding trait to avoid excessive water loss, hydraulic failure and to increase water use efficiency. In this study, stomatal and transpiration responses under increasing VPD at the leaf and whole-plant level of 8 wild banana (sub)species were evaluated, displaying significant differences in stomatal reactivity. Three different phenotypic groups were identified under increasing VPD. While (sub)species of group III maintained high transpiration rates under increasing VPD, M. acuminata ssp. errans (group I), M. acuminata ssp. zebrina (group II) and M. balbisiana (group II) showed the highest transpiration rate limitations to increasing VPD. In contrast to group I, group II only showed strong reductions at high VPD levels, limiting the cost of reduced photosynthesis and strongly increasing their water use efficiency. M. acuminata ssp. zebrina and M. balbisiana thus show the most favourable responses. This study provides a basis for the identification of potential parent material in gene banks for breeding future-proof bananas that cope better with lack of water

    Applying the Cry of Pain model as a predictor of deliberate self-harm in an early-stage adult male prison population

    Get PDF
    Purpose: Deliberate self-harming behaviour is more prevalent within the prison environment than in community samples, with those in the first weeks of imprisonment at greatest risk. Research in this area has been largely atheoretical and a unifying model may improve the predictability of assessment and the development of intervention approaches. This study applied William and Pollock’s (2001) Cry of Pain model as the theoretical process of deliberate self-harm in the early stages of imprisonment. Method: A prospective study of new arrivals at an adult male prison. Participants (n =181) completed questionnaires and it was hypothesised that the factors derived from the model (perceived stress, defeat, entrapment and absence of rescue factors) would be predictive of future deliberate self-harm. Prisoners with active psychosis and non-English speakers were excluded. All participants were followed up for four months for instances of self-harm. Eighteen participants engaged in self-harm during this period. Results: The Cry of Pain Model was supported in the analysis. Hierarchical binary logistic regression confirmed that all features of the model were supported as predictive of future self-harm in prison, even after controlling for previous self-harm, depression and hopelessness. Conclusion: The Cry of Pain model is supported as a predictive model for deliberate self-harm in prison. Suggestions are offered as to the impact on assessment and intervention directions in prison

    Using growth and transpiration phenotyping under controlled conditions to select water efficient banana genotypes

    Get PDF
    Open Access JournalWater deficit is one of the world’s major constraints in agriculture and will aggravate in the future. Banana (Musa spp.) is an important crop that needs vast amounts of water for optimal production. The International Transit Center of Bioversity International holds the world’s biggest collection of banana biodiversity (>1,500 accessions). The long-term aim of this research is to evaluate the potential within this collection for climate smart agricultural usage. Therefore, we developed a phenotyping setup under controlled environmental conditions and we selected 32 representatives of the Musa biodiversity (29 cultivars and 3 wild relatives) for evaluation. The best performing genotypes accumulated six to seven times more biomass than the least performing. Eight genotypes (five ABB, one AAB, and two AAA) invest under osmotic stress significantly more in root growth than in leaf growth. We predict therefore that these genotypes have potential for high productivity under rain fed conditions with a short dry season. To gain more insight in the transpiration physiology, we gravimetrically monitored individual plant transpiration over the diurnal period. All analyzed genotypes showed a marked reduction in transpiration rate in the afternoon. Moreover, the timing of this onset, as well as its impact on total transpiration, was genotype dependent. This phenomenon was more pronounced in 13 genotypes (eight ABB, two AAB, two AA, one BB). Banana is a crop originating from the humid tropics and has developed a strong root pressure to maintain an efficient water and nutrient transport even under saturated relative humidity conditions. Therefore, we hypothesize that the diurnal transpiration decline contributes to a higher water use efficiency without compromising the nutrient transport. Of the eight genotypes that had the best growth under osmotic stress, all analyzed ABB cultivars have a lower maximal transpiration rate, keep this maximal transpiration for a shorter time and therefore consume less water per day. We conclude that lab models are very useful to study the biodiversity and to identify different traits that contribute to a better drought tolerance/avoidance. We encourage researchers investigating other crops to start exploring their collections

    Using Growth and Transpiration Phenotyping Under Controlled Conditions to Select Water Efficient Banana Genotypes

    Get PDF
    Water deficit is one of the world’s major constraints in agriculture and will aggravate in the future. Banana (Musa spp.) is an important crop that needs vast amounts of water for optimal production. The International Transit Center of Bioversity International holds the world’s biggest collection of banana biodiversity (>1,500 accessions). The long-term aim of this research is to evaluate the potential within this collection for climate smart agricultural usage. Therefore, we developed a phenotyping setup under controlled environmental conditions and we selected 32 representatives of the Musa biodiversity (29 cultivars and 3 wild relatives) for evaluation. The best performing genotypes accumulated six to seven times more biomass than the least performing. Eight genotypes (five ABB, one AAB, and two AAA) invest under osmotic stress significantly more in root growth than in leaf growth. We predict therefore that these genotypes have potential for high productivity under rain fed conditions with a short dry season. To gain more insight in the transpiration physiology, we gravimetrically monitored individual plant transpiration over the diurnal period. All analyzed genotypes showed a marked reduction in transpiration rate in the afternoon. Moreover, the timing of this onset, as well as its impact on total transpiration, was genotype dependent. This phenomenon was more pronounced in 13 genotypes (eight ABB, two AAB, two AA, one BB). Banana is a crop originating from the humid tropics and has developed a strong root pressure to maintain an efficient water and nutrient transport even under saturated relative humidity conditions. Therefore, we hypothesize that the diurnal transpiration decline contributes to a higher water use efficiency without compromising the nutrient transport. Of the eight genotypes that had the best growth under osmotic stress, all analyzed ABB cultivars have a lower maximal transpiration rate, keep this maximal transpiration for a shorter time and therefore consume less water per day. We conclude that lab models are very useful to study the biodiversity and to identify different traits that contribute to a better drought tolerance/avoidance. We encourage researchers investigating other crops to start exploring their collections

    Filling the gaps in gene banks: collecting, characterizing and phenotyping wild banana relatives of Papua New Guinea

    Get PDF
    International audienceSince natural habitats are disappearing fast, there is an urgent need to collect, characterize, and phenotype banana (Musa spp.) crop wild relatives to identify unique genotypes with specific traits that fill the gaps in our gene banks. We report on a collection mission in Papua New Guinea carried out in 2019. Seed containing bunches were collected from Musa peekelii ssp. angustigemma (N.W.Simmonds) Argent (3), M. schizocarpa N. W. Simmonds (4), M. balbisiana Colla (3), M. acuminata ssp. banksii (F. Muell.) Simmonds (14), M. boman Argent (3), M. ingens Simmonds (2), M. maclayi ssp. maclayi F.Muell. ex Mikl.-Maclay (1), and M. lolodensis Cheesman (1). This material, together with the seeds collected during a previous mission in 2017, form the basis for the development of a wild banana seed bank. For characterization and phenotyping, we focused on the most ubiquitous indigenous species of Papua New Guinea: M. acuminata ssp. banksii, the ancestor of most edible bananas. We calculated that the median genomic dissimilarity of the M. acuminata ssp. banksii accessions was 4% and that they differed at least 5% from accessions present in the International Transit Centre, the world's largest banana gene bank. High-throughput phenotyping revealed drought avoidance strategies with significant differences in root/shoot ratio, soil water content sensitivity, and response towards vapor pressure deficit (VPD). We deliver a proof of principle that the wild diversity is not yet fully covered in the gene banks and that wild M. acuminata ssp. banksii populations contain individuals with unique traits, useful for drought tolerance breeding programs

    "If we use the strength of diversity among researchers we can only improve the quality and impact of our research": Issues of equality, diversity, inclusion, and transparency in the process of applying for research funding

    Get PDF
    This paper sets out the recommendations that have emerged from a six-month-long exploration and discussion of the processes that take place before research is submitted for funding: the ‘pre-award’ environment. Our work concentrated on how this environment is experienced by researchers at all career stages and from a variety of backgrounds, demographics, and disciplines, as well as by research managers and research support professionals. In the later stages of our exploration, representatives from research funders were also involved in the discussions. The primary component of this project was an analysis of pre-award activities and processes at UK universities, using information collated from workshops with researchers and research management and support staff. The findings of this analysis were presented as a workflow diagram, which was then used to surface issues relating to equality, diversity, inclusion, and transparency in context. The workflow diagram and the issues highlighted by it were used to structure discussions at a symposium for a range of research stakeholders, held in Bristol, UK, in January 2023. The recommendations set out in this paper are drawn from discussions that took place at that event. This paper is not an exhaustive landscape analysis, nor a review of existing research and practice in the area of pre-award processes or of recent thinking on the topics of equality, diversity, and inclusion (EDI). Instead, it aims to summarise and encapsulate the suggestions put forward by the stakeholders during the symposium. These recommendations, from experienced professionals working in the field, are based on their encounters with the issues raised in the project. They do not solely relate to those working on pre-award processes, but may also apply to funders, policymakers, university leaders, and professional associations, since many of the challenges flagged in our research are systemic and cultural, and reach far beyond the research office

    Green process innovation: Where we are and where we are going

    Get PDF
    Environmental pollution has worsened in the past few decades, and increasing pressure is being put on firms by different regulatory bodies, customer groups, NGOs and other media outlets to adopt green process innovations (GPcIs), which include clean technologies and end-of-pipe solutions. Although considerable studies have been published on GPcI, the literature is disjointed, and as such, a comprehensive understanding of the issues, challenges and gaps is lacking. A systematic literature review (SLR) involving 80 relevant studies was conducted to extract seven themes: strategic response, organisational learning, institutional pressures, structural issues, outcomes, barriers and methodological choices. The review thus highlights the various gaps in the GPcI literature and illuminates the pathways for future research by proposing a series of potential research questions. This study is of vital importance to business strategy as it provides a comprehensive framework to help firms understand the various contours of GPcI. Likewise, policymakers can use the findings of this study to fill in the loopholes in the existing regulations that firms are exploiting to circumvent taxes and other penalties by locating their operations to emerging economies with less stringent environmental regulations.publishedVersio

    The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light.

    Get PDF
    Dynamic light conditions require continuous adjustments of stomatal aperture. The kinetics of stomatal conductance (gs) are hypothesized to be key to plant productivity and water use efficiency. Using step-changes in light intensity, we studied the diversity of light-induced gs kinetics in relation to stomatal anatomy in five banana genotypes (Musa spp.) and modelled the impact of both diffusional and biochemical limitations on photosynthesis (A). The dominant photosynthesis limiting factor was the diffusional limitation associated with gs kinetics. All genotypes exhibited a strong limitation of A by gs, indicating a priority for water saving. Moreover, significant genotypic differences in gs kinetics and gslimitations of A were observed. For two contrasting genotypes the impact of differential gs kinetics was further investigated under realistic diurnally fluctuating light conditions and at whole-plant level. Genotype-specific stomatal kinetics observed at the leaf level were corroborated at whole-plant level by transpiration dynamics, validating that genotype-specific responses are still maintained despite differences in gs control at different locations in the leaf and across leaves. However, under diurnally fluctuating light conditions the impact of gs speediness on A and intrinsic water use efficiency (iWUE) depended on time of day. During the afternoon there was a setback in kinetics: absolute gs and gs responses to light were damped, strongly limiting A and impacting diurnal iWUE. We conclude the impact of differential gs kinetics depended on target light intensity, magnitude of change, gs prior to the change in light intensity and particularly time of day
    • 

    corecore