47 research outputs found

    Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands

    Get PDF
    Peatlands at high latitudes have accumulated \u3e400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO and CH fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m year ; including 6 ± 7 g C-CH m year emission). We found, however, that lowering the WT by 10 cm reduced the CO sink by 13 ± 15 g C m year and decreased CH emission by 4 ± 4 g CH m year , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m ). Yet, the reduced emission of CH , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO m year . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost \u3e2 kg C m over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario

    Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance

    Get PDF
    Vegetation composition shifts, and in particular, shrub expansion across the Arctic tundra are some of the most important and widely observed responses of high-latitude ecosystems to rapid climate warming. These changes in vegetation potentially alter ecosystem carbon balances by affecting a complex set of soil-plant-atmosphere interactions. In this review, we synthesize the literature on (a) observed shrub expansion, (b) key climatic and environmental controls and mechanisms that affect shrub expansion, (c) impacts of shrub expansion on ecosystem carbon balance, and (d) research gaps and future directions to improve process representations in land models. A broad range of evidence, including in-situ observations, warming experiments, and remotely sensed vegetation indices have shown increases in growth and abundance of woody plants, particularly tall deciduous shrubs, and advancing shrublines across the circumpolar Arctic. This recent shrub expansion is affected by several interacting factors including climate warming, accelerated nutrient cycling, changing disturbance regimes, and local variation in topography and hydrology. Under warmer conditions, tall deciduous shrubs can be more competitive than other plant functional types in tundra ecosystems because of their taller maximum canopy heights and often dense canopy structure. Competitive abilities of tall deciduous shrubs vs herbaceous plants are also controlled by variation in traits that affect carbon and nutrient investments and retention strategies in leaves, stems, and roots. Overall, shrub expansion may affect tundra carbon balances by enhancing ecosystem carbon uptake and altering ecosystem respiration, and through complex feedback mechanisms that affect snowpack dynamics, permafrost degradation, surface energy balance, and litter inputs. Observed and projected tall deciduous shrub expansion and the subsequent effects on surface energy and carbon balances may alter feedbacks to the climate system. Land models, including those integrated in Earth System Models, need to account for differences in plant traits that control competitive interactions to accurately predict decadal- to centennial-scale tundra vegetation and carbon dynamics

    Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems

    Get PDF
    Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm(-2)) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.Peer reviewe

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types

    Carbon cycling and storage in world forests: Biome patterns related to forest age

    No full text
    Forest age, which is affected by stand-replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome-age class combination and the sources of variability are discussed. Aggregated biome-level estimates of NPP and NEP were higher in intermediate-aged forests (e.g., 30-120 years), while older forests (e.g.,\u3e 120 years) were generally less productive. The mean NEP in the youngest forests (0-10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (-0.1 and -1.9 Mg C ha-1yr-1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was - 1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha-1yr-1 across five age classes (0-10, 11-30, 31-70, 71-120, 121-200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha-1yr-1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle. © 2004 Blackwell Publishing Ltd

    Carbon fluxes in a young, naturally regenerating jack pine ecosystem

    No full text
    Within the FLUXNET network of tower stations for performing long-term measurements of CO \u3c inf\u3e 2 exchange between forest ecosystems and the atmosphere, most research has focused on mature forests that are strong carbon sinks. Nevertheless, it is just as valuable to quantify fluxes from recently disturbed forests so that we can recognize and predict the impact of disturbance on carbon fluxes. We measured carbon fluxes and microclimatic variables within a naturally regenerating, young (12-14 years of age) jack pine ecosystem in northern Michigan. During the months June to October of 2001-2003, this ecosystem exhibited a low net uptake of approximately 17.8-18.3 g C m \u3c sup\u3e -2 5 months \u3c sup\u3e -1 . Soil respiration was independently measured and then modeled on the basis of soil temperature and soil moisture. Model estimates of soil respiration were 627, 583, and 681 g C m \u3c sup\u3e -2 5 months \u3c sup\u3e -1 from June to October in 2001, 2002, and 2003, respectively. Net ecosystem exchange (NEE) and soil respiration were inversely correlated in midsummer (r = -0.6, p = 0.001) during the period of lowest NEE (greatest uptake) and highest soil respiration rates. In the spring, NEE and soil respiration were positively correlated (r = 0.4, p = 0.01). During the fall, when soil temperatures remained fairly steady and air temperatures fluctuated, this coefficient between NEE and soil respiration declined to an average -0.25 (p = 0.2). Our results indicate that 12-14 years following disturbance this ecosystem displays a small net uptake during the June to October months but respiratory losses during the snow season (mid-October to April) could possibly counterbalance this carbon gain. Copyright 2006 by the American Geophysical Union
    corecore