82 research outputs found

    Molecular and phenotypical investigation of ciprofloxacin resistance among Campylobacter jejuni strains of human origin: high prevalence of resistance in Turkey

    Get PDF
    Campylobacteriosis is one of the most frequently reported zoonoses worldwide. The well-documented increase in the ciprofloxacin resistance has increased the importance of rapid detection of the resistance. The incidence of ciprofloxacin resistance was investigated using real-time PCR. Identification of one hundred and fifty-eight strains was performed by PCR. Minimum inhibitory concentration (MIC) of ciprofloxacin was determined by Epsilometer test. Following the confirmation of the efficiencies of singleplex real-time PCR methods using two different probes, a cytosine to thymine point mutation at codon 86 was detected by allelic discrimination. Of the 158 strains, 114 (72.2%) were determined to be resistant to ciprofloxacin. The MIC50 and the MIC90 of ciprofloxacin were found to be 8 and >= 32 mg/L, respectively. By real-time PCR, the presence of the mutation was confirmed in all, but one, resistant strains and the absence of the mutation was demonstrated in all, but one, susceptible strains. The rate of resistance is high among C. jejuni strains and ciprofloxacin should not be used in the treatment of such infections in Turkey. A cytosine to thymine mutation is the most frequently detected mechanism for the resistance. Real-time PCR can be used for the quick screening of the resistance

    Scientific Opinion on the re-evaluation of Quinoline Yellow (E 104) as a food additive:Question No EFSA-Q-2008-223

    Get PDF
    The Panel on Food Additives and Nutrient Sources added to Food provides a scientific opinion re-evaluating the safety of Quinoline Yellow (E 104). Quinoline Yellow has been previously evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1975, 1978 and 1984, and the EU Scientific Committee for Food (SCF) in 1984. Both committees established an Acceptable Daily Intake (ADI) of 0-10 mg/kg body weight (bw). Studies not evaluated by JECFA and the SCF included a chronic toxicity and carcinogenicity study with a reproductive toxicity phase in rats and a study on behaviour in children by McCann et al. from 2007. The latter study concluded that exposure to a mixture of colours including Quinoline Yellow resulted in increased hyperactivity in 8- to 9-years old children. The Panel concurs with the conclusion from a previous EFSA opinion on the McCann et al. study that the findings of the study cannot be used as a basis for altering the ADI. The Panel notes that Quinoline Yellow was negative in in vitro genotoxicity as well as in long term carcinogenicity studies. The Panel concludes that the currently available database on semi-chronic, reproductive, developmental and long-term toxicity of Quinoline Yellow, including a study in rats not apparently taken into consideration by JECFA or the SCF, provides a rationale for re-definition of the ADI. Using the NOAEL of 50 mg/kg bw/day provided by the chronic toxicity and carcinogenicity study with a reproductive toxicity phase carried out in rats and applying an uncertainty factor of 100 to this NOAEL, the Panel establishes an ADI of 0.5 mg/kg bw/day. The Panel notes that at the maximum levels of use of Quinoline Yellow, refined intake estimates are generally well over the ADI of 0.5 mg/kg bw/day

    EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the risk posed by Shiga toxinproducing Escherichia coli (STEC) and other pathogenic bacteria in seeds and sprouted seeds

    Get PDF

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on Dietary Reference Values for protein

    Get PDF
    This opinion of the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for protein. The Panel concludes that a Population Reference Intake (PRI) can be derived from nitrogen balance studies. Several health outcomes possibly associated with protein intake were also considered but data were found to be insufficient to establish DRVs. For healthy adults of both sexes, the average requirement (AR) is 0.66 g protein/kg body weight per day based on nitrogen balance data. Considering the 97.5th percentile of the distribution of the requirement and assuming an efficiency of utilisation of dietary protein for maintenance of 47 %, the PRI for adults of all ages was estimated to be 0.83 g protein/kg body weight per day and is applicable both to high quality protein and to protein in mixed diets. For children from six months onwards, age-dependent requirements for growth estimated from average daily rates of protein deposition and adjusted by a protein efficiency for growth of 58 % were added to the requirement for maintenance of 0.66 g/kg body weight per day. The PRI was estimated based on the average requirement plus 1.96 SD using a combined SD for growth and maintenance.For pregnancy, an intake of 1, 9 and 28 g/d in the first, second and third trimesters, respectively, is proposed in addition to the PRI for non-pregnant women. For lactation, a protein intake of 19 g/d during the first six months, and of 13 g/d after six months, is proposed in addition to the PRI for non-lactating women. Data are insufficient to establish a Tolerable Upper Intake Level (UL) for protein. Intakes up to twice the PRI are regularly consumed from mixed diets by some physically active and healthy adults in Europe and are considered safe

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Scientific Opinion on safety and efficacy of selenium in the form of organic compounds produced by the selenium-enriched yeast <em>Saccharomyces cerevisiae</em> NCYC R646 (Selemax 1000/2000) as feed additive for all species

    No full text
    <p>The additive Selemax consists of selenium-containing inactivated yeast (<em>Saccharomyces cerevisiae </em>NCYC R646), enriched during the fermentation process with organic selenocompounds, and is intended to be used as a nutritional additive, providing a source of the essential trace element selenium for all animal species. Based on data from a tolerance study in chickens for fattening, the use of Selemax as a selenium source is considered to be safe for all animal species. The FEEDAP Panel reiterates its former conclusion that the use of any selenised yeast would result in similar selenium deposition in tissues and products. To ensure consumer safety from consumption of tissues and products of animals treated with Selemax, the FEEDAP Panel concludes that dietary selenium supplementation from Selemax, as for other selenised yeasts, should not exceed a maximum of 0.2 mg Se/kg complete feed. In the absence of specific data, the product is considered as a potential irritant to skin and eyes and sensitiser to skin. Owing to its proteinaceous nature, the additive is considered a potential respiratory sensitiser. The FEEDAP Panel considers that the use of Selemax in feed does not pose an additional risk to the environment, compared to other sources of selenium for which it will substitute, as long as the maximum authorised content in feedingstuffs is not exceeded. Based on the response of liver glutathione peroxidase activity and the liver/plasma concentration of selenium, the FEEDAP Panel considers Selemax an effective source of selenium for all species. Selemax does not modify the quality of meat as measured by physical parameters.</p&gt
    • 

    corecore