
1 
 

Molecular and Phenotypical Investigation of Ciprofloxacin Resistance Among 

Campylobacter jejuni strains of Human Isolates: High Prevalence of Resistance in Turkey 

Mehmet İlktaç1*, Betigul Ongen2, Thomas J. Humphrey3, Lisa K. Williams3 

1. Eastern Mediterranean University, Faculty of Pharmacy, Microbiology Department, 

Famagusta, TR North Cyprus, via Mersin 10 Turkey. 

2. Istanbul University, Istanbul Faculty of Medicine, Medical Microbiology Department, 

Istanbul, Turkey. 

3. Microbiology and Infectious Disease Group, Swansea University Medical School, 

Swansea University, Swansea, SA2 8PP, UK. 

*Corresponding author:  

Mehmet Ilktac  

Correspondence Address: Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, 

TR North Cyprus, Mersin 10 Turkey.  

Contact phone: 0090 548 888 4868 / 0090 392 630 2401 

Fax: 0090 392 630 2819 

Correspondence e-mail: mehmet.ilktac@emu.edu.tr 

Keywords: Campylobacter, ciprofloxacin, E-test, Turkish, real-time PCR, resistance. 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/266980643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mehmet.ilktac@emu.edu.tr


2 
 

     ABSTRACT 

Introduction: Intestinal infections associated with Campylobacter species are one of the most 

frequently reported zoonosis worldwide. There has been a well-documented increase in the 

ciprofloxacin resistance in strains, which has increased the importance of rapid detection of the 

resistance.  

Aim: To investigate, using real-time PCR, the incidence of ciprofloxacin resistance among C. 

jejuni strains isolated from humans in Turkey. 

Methodology: One hundred and fifty eight C. jejuni strains isolated from stool samples of patients 

were included in the study. The genus and species level identification of the strains were performed 

by PCR. Minimum inhibitory concentration of ciprofloxacin was determined by Epsilometer test. 

A cytosine to thymine point mutation at codon 86 was detected by allelic discrimination using 

Aria-Mx real time PCR system. 

Results: Of the 158 strains, 114 (72.2%) were determined to be resistant to ciprofloxacin. The 

MIC50 and the MIC90 of ciprofloxacin was found to be 8 and ≥ 32 mg l-1, respectively. By real time 

PCR, the presence of the mutation was confirmed in all, but one, resistant strain and the absence 

of the  mutation was demonstrated in all, but one, susceptible strain. Allelic discrimimnation could 

not be determined for two strains.  

Conclusion: The rate of ciprofloxacin resistance is high among C. jejuni strains and ciprofloxacin 

should not be used in the treatment of such infections in Turkey. A cytosine to tyhmine mutation 

at 86th codon is the most frequently detected mechanism for the resistance among C. jejuni strains 

in Turkey. Real time PCR can be used accurately for the quick screening of the resistance. 
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INTRODUCTION 

Campylobacteriosis has been the most frequently reported zoonosis in the European Union 

(EU) since 2005. In 2017, the European Food Safety Administration reported 246,158 total 

confirmed cases and the incidence rate of 65.8 cases per 100,000 people [1], although this is likely 

to be a large underestimation. In the same year, campylobacteriosis surpassed salmonellosis among 

foodborne infections in the United States of America with the incidence of 19.2 per 100,000 [2]. 

Although the data related with the incidence of the infection in Africa and Asia are limited, 

campylobacteriosis is also thought to be endemic in these two continents [3]. Campylobacter jejuni 

is responsible for the majority of infections followed by C. coli and these two species together are 

responsible for more than 90% of human infections [1, 4].  C. jejuni infections in humans are 

generally foodborne and undercooked meat of animals, especially chicken, contaminated with 

Campylobacter is the main source of the infection [4].  

Intestinal infections of C. jejuni in people are generally self-limiting and resolve in a few 

days without the need for antibiotic treatment. However, treatment may be required for patients 

who are at their age extremes, immunosupressed, have prolonged or severe enteritis or sytemic 

infections [5, 6]. Erythromycin is the first choice of antibiotic for the treatment of confirmed cases 

of Campylobacter. However, since the aetiology of acute gastroenteritis is not generally 

investigated, ciprofloxacin, a fluoroquinolone, may be prescribed as part of the empirical treatment 

of undifferentiated diarrhea [6, 7]. However, the rate of ciproflocaxin resistance among 

Campylobacter strains of human origin has been increasing worldwide since the late 1990s in 

parallel with the increase in the use of other fluoroquinolones in animal husbandry since the 

mid1990s [3, 7, 8]. Fluoroquinolone resistant Campylobacter strains have been classified recently 

among the “high priority” pathogens  related to the discovery, research and development of new 

antibiotics for drug resistant bacterial infections [9]. 

Ciproflocaxin resistance mechanisms among C. jejuni isolates have been demonstrated to 

be due to chromosomal mutations in the quinolone resistance determining region (QRDR) of the  

gyrA gene. Although several other mutations have also been reported, a single point mutation 

C257T in gyrA, that results in threonine to isoleucine substitution at the amino acid position 86, 

has been recognized to be the most frequent mechanism [5, 10]. Detection of this mutation has 

been the focus of the methods used for the investigation of the molecular mechanisms of 
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ciprofloxacin resistance. Many of the molecular methods used for the detection of the mutation 

necessitate the use of agarose gel electrophoresis, which makes the process time-consuming and 

also liable to contamination.  Real-time PCR based allelic discrimation depends on the competition 

between two probes, one specific for wild type and the other for mutant DNA, that are labelled 

with different reporter fluors. The technique was reported to discriminate the wild type and mutant 

strains accurately based on the relative fluorescence emission of the reporters [11]. 

Campylobacteriosis is one of the most important travel-associated infections. Although the 

majority of cases reported in EU are domestic, Turkey is the second most important non-EU 

country that is responsible for travel-associated Campylobacter infections in EU [1]. 

Campylobacter infections with ciprofloxacin resistant strains have been demonstrated to be travel-

associated [6, 12]. More than 50% of travel-related Campylobacter infections in the United States 

of America, Denmark, United Kingdom and Norway were shown to be due to ciprofloxacin 

resistant strains [13-16]. Studies related with the rate of ciprofloxacin resistance and its molecular 

mechanisms among Campylobacter isolates of humans in Turkey, a country that is highly 

attractive to  tourists, are limited [17, 18]. It is evident that studies investigating the rate of 

ciprofloxacin resistance and its mechanism among Campylobacter strains in Turkey will provide 

valuable data about the treatment of the infection not only for Turkey but also for other countries 

where travel to Turkey is frequent.    

 In the present study, the aim was to determine the ciprofloxacin resistance and its molecular 

mechanism among C. jejuni strains isolated from human clinical samples in Turkey and to 

investigate the use of real time PCR for the quick detection of the resistance. 

MATERIALS AND METHODS 

One hundred and fifty eight C. jejuni strains isolated from stool samples of patients between 

2004 and 2010 were included in the study. Strains were identified to genus and species level by 

PCR [19, 20]. C. jejuni ATCC 33560 was used as positive control for the genus and species level 

PCR.  
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Phenotypical Ciprofloxacin Resistance  

The minimum inhibitory concentration (MIC) of ciprofloxacin was determined by the 

Epsilometer test on Mueller Hinton agar (Oxoid, Basingstoke, UK) supplemented with 5% horse 

blood. The resistance of the strains was assessed according to the breakpoint (MIC>0.5 mg l-1) 

suggested by European Committee on Antimicrobial Susceptibility Testing (EUCAST) [21]. C. 

jejuni NCTC 11168 and Staphylococcus aureus ATCC 29213 was used as quality control strains 

for the growth control of the media and the control of the susceptibility testing, respectively. 

Statistical analysis of the difference in the rate of the resistance in between 2004-2008 and 2009-

2010 was carried out by chi-squared rest and p≤0.05 was regarded as significant. 

Real-time PCR 

DNA extraction was carried out using a commercially available kit (High Pure Template 

Preparation Kit, Roche, Germany) according to manufacturer`s recommendations. Singleplex real-

time PCR was performed using the primers and probes as described previously [11]. Briefly,  the 

forward (5’ TGG GTG CTG TTA TAG GTC GT 3’) and reverse (5’ GCT CAT GAG AAA GTT 

TAC TC 3’) primers together with the wild-type probe TAQ2 (5’ FAM-CCA CAT GGA GAT 

ATA GCA GTT TAT GAT G-TAM 3’) or mutant probe TAQ3 (5’ JOE-CCA CAT GGA GAT 

ATA GCA GTT TAT GAT GC-BHQ1 3’) was carried out using AriaMx Real Time PCR Sytem 

(Agilent Technologies, Cheshire, UK).  A 25 µl final reaction mixture contained 10 ng template 

DNA, 1X Master Mix (Agilent Technologies, Cheshire, UK), 0.8 µM forward and reverse primers 

and 160 nM TAQ2 or TAQ3. PCR parameters were adjusted as follows: 95˚C 10 min, 40 cycles 

of 95˚C 1 min and 55˚C 1 min. For each run, nuclease free water, DNA of C. jejuni NCTC11168 

and that of a strain which was determined to have C257T mutation by sequencing was used as 

non-template, mutation-negative and mutation-positive control, respectively. Efficiencies of the 

singleplex real-time PCR reactions were determined by serially diluting 10 ng DNAs of mutation-

negative and mutation-positive control strains. 

Molecular Detection of Ciprofloxacin Resistance: Allelic Discrimination 

Detection of cytosine to thymine point mutation at 257th nucleotide of QRDR of gyrA  was 

carried out by allelic discrimination using AriaMx real-time PCR system (Agilent Technologies, 

Cheshire, UK). The reaction mixture was the same as used in real-time PCR described above 
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except that the target DNA was 1 ng. Both probes were included in the reaction at 160nM and 30 

nM ROX was used as passive reference dye for the normalization of the reporter fluor signal. PCR 

parameters for allelic discrimination were the same as used in real-time PCR [11]. Non-template, 

mutation-negative and mutation positive control were used for each run as described in real time 

PCR.  

    RESULTS 

Phenotypical Ciprofloxacin Resistance 

Of the 158 strains, 80 and 78 were isolated in between 2004-2008 and 2009-2010, 

respectively. One hundred and fourteen (72.2%) strains were determined to be resistant to 

ciprofloxacin. Ciprofloxacin resistance rate was 67.5% in 2004-2008 and 76.9% in 2009-2010. 

The increase in the resistance rate between two periods was not statistically significant. Thirty 

eight percent of strains were determined to have high level of resistance with MICs of 32 mg l-1 

and above. In both periods, MIC50 and MIC90 of ciprofloxacin was found to be 8 and ≥ 32 mg l-1, 

respectively. The distribution of ciprofloxacin MICs of the strains is shown in the Table-1. 

Table-1. Ciprofloxacin MICs of 158 C. jejuni strains [n (%)]. 

MIC (mg l-1) 2004 2005 2006 2007 2008 2009 2010 Total 

0.015 0 0 0 0 1 2 1 4 

0.03 4 1 1 3 6 9 3 27 

0.06 0 2 2 3 3 3 0 13 

2 0 0 0 1 0 3 1 5 (3.2) 

4 0 2 0 5 2 5 2 16 (10.1) 

8 2 4 0 8 4 9 5 32 (20.3) 

16 0 0 0 0 0 0 1 1 (0.6) 

≥32 1 1 1 12 11 20 14 60 (38) 

Total  7 10 4 32 27 51 27 158 
* The number of resistant strains is underlined. 
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Real-time PCR and Allelic Discrimination 

The efficiencies of real-time PCR reactions for mutation-negative and mutation-positive 

control strains were found to be 93% and 105% using TAQ2 probe and 93% and 96% using TAQ3 

probe, respectively. One strain which was susceptible to ciprofloxacin (MIC:0.03 mg l-1) did not 

yield any amplicon with either of the probes and no amplicon was detected for another strain that 

was resistant to ciprofloxacin (MIC:32 mg l-1) with TAQ2 probe. All other strains gave positive 

result in the singleplex PCRs with both  probes.  

Upon allelic discrimination, all strains, but one, that were susceptible to ciprofloxacin by 

E-test (MIC>0.5 mg l-1) gave a FAM signal (ΔRn:FAM) greater than 0.076 and a JOE signal 

(ΔRn:JOE) less than 0.066. All strains, but one, that were were resistant to ciprofloxacin had the 

signal of ΔRnFAM<0.073 and ΔRnJOE>0.066 (Figure-1). One strain that was susceptible and 

another one that was resistant to ciprofloxacin  did not yield any amplicon with either of the probes 

and TAQ2, respectively. Allelic discrimination could not be determined for these two strains.   

Figure-1: An illustration of allelic discrimination. 

* A: Resistant strains with ΔRnFAM<0.073 and ΔRnJOE>0.066 ; B: Wild-type strains with ΔRn:FAM>0.076 and 

ΔRn:JOE <0.066 ; NC: Non-template control 
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DISCUSSION 

 Campylobacteriosis is a zoonosis that transmits to humans mainly via consumption of 

chicken meat and is the leading cause of foodborne infections in Europe. There was a substantial 

increasing trend in the number of reported confirmed cases between 2008 and 2017 from 40.4 to 

64.8 per 100,000 population in EU [1, 22]. Similar to many EU countries, the isolation rate of 

Campylobacter spp. from patients with acute gastroenteritis  was reported to be high, at 5.4%, in 

Turkey [23]. 

Although antibiotic treatment is not neccessary for the majority of cases, ciprofloxacin was 

the drug of choice when treatment was required until the mid-2000s. Due to the emergence of 

ciprofloxacin-resistant strains of human origin worldwide coinciding with the use of 

fluoroquinolones in food producing animals, erythromycin replaced ciprofloxacin for treatment. 

However, because the infection can be clinically indistinguishable from acute enteritis caused by 

other pathogenic bacteria that are generally susceptible to the antibiotic, ciprofloxacin may still be 

used for the treatment of campylobacteriosis especially in regions where Campylobacter is not 

investigated routinely. This would eventually lead to the failure of the treatment [4]. Therefore, 

identifying the infectious agent responsible for gastroenteritis and rapid detection of the 

ciprofloxacin resistance have clinical importance in terms of the treatment of the infections. 

 Various antibiotic susceptibility testing methods, including disk diffusion, agar dilution, 

broth dilution and E-test have been used for the detection of ciprofloxacin resistance among 

Campylobacter isolates. Although EUCAST [21] and Clinical Laboratory Standard Institute 

(CLSI) [25] recommend broth microdilution method for the determination of the MIC, E-test was 

reported to be a reliable quantitative method for the investigation of ciprofloxacin resistance 

showing excellent concordance with microdilution [26, 27].  

A high rate (73.4%) of ciprofloxacin resistance among C. jejuni human isolates detected in 

the present study shows similarity to the limited number of previous studies carried out in this 

country [17, 18]. The high rate of fluoroquinolone resistance among C. jejuni chicken isolates 

reported in a recent study in Turkey may reflect the over-use of the antibiotic in animal husbandry, 

which may be responsible for the high rate of resistance among human strains detected in the 

present study [28]. Likewise, high rate of resistance was reported from various European countries 
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such as Portugal, Estonia, Lithuania, Italy and Spain [29] and from countries in Asia including 

Korea [30], China [31] and India [32]. On the other hand, the rate of resistance was reported to be 

low in Australia [33] and Sweeden [34]. The geographical difference in the prevelance of the 

resistance may be due  to the difference in the rate of the use of ciprofloxcacin in human infections 

and  livestock production. The correlation between the over-use of the antibiotic among animals 

and the increasing rate of resistance among Campylobacter of human origin has been well 

described [3, 35, 36]. 

Ciprofloxacin resistance among C. jejuni strains is predominantly as a result of 

chromosomal mutations related with the gyrA gene that is the target of the antibiotic. Although 

numerous different mutations have been reported, a cytosine to thymine transition at the 257th 

nucleotide (86th codon) is the most frequently detected mutation that is responsible for 

ciprofloxacin resistance [5, 10]. In contrast to many other bacteria, mutations that result in the 

development of resistance have been reported to increase the fitness of Campylobacter spp. leading 

to the persistence of the resistant strains even after cessation of the antibiotic pressure [12, 36-39]. 

Such a phenomenon increases the importance of the emergence of resistant strains due to the over- 

and mis-use of fluoroquinolones in animal husbandry and humans resulting in the treatment failure 

for over a long period of time.  

Various methods have been used for investigating the molecular mechanisms of the 

ciprofloxacin resistance among C. jejuni strains and the majority of them rely on the detection of 

the point mutation at the codon 86 of gyrA gene. The two most frequently used methods, mismatch 

amplification mutation assay (MAMA) and PCR-RFLP, were demonstrated to be accurate but 

labourious because of the need of agarose gel electrophoresis [11, 40, 41, 42]. Fluorogenic PCR 

depends on the the use of two probes, one specific for the wild-type and the other one for the 

mutant strains, which are tagged with different reporter fluors in a competitive manner in a 

multiplex real time PCR reaction. The method is practical because it obviates the need for post-

PCR manipulation. Wilson DL et al. [11] reported that the technique is sensitive and rapid for the 

the detection of cytosin to thymine transition that is related with ciprofloxacin resistance. Mutant 

strains that were resistant and wild type strains that were susceptible to ciprofloxacin were reported 

to yield different emission of the reporter fluors leading to the determination of the presence or 

absence of the mutation [11]. In the present study, the same primers and probes as suggested by 
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Wilson DL et al. [11] were used first time for the allelic discrimination using an AriaMx Real 

Time PCR Sytem. PCR detected that all of the resistant and susceptible strains, but two, had a 

higher emmision of reporter fluor tagged to mutant and wild-type probe, respectively. Thus, all of 

the strains, except two, that were phenotypically resistant or susceptible to ciprofloxacin were 

determined to have the mutation or not, respectively. Of the two strains that the real time PCR 

method is inefficient for determining the presence or absence of the mutation,  one (ciprofloxacin 

susceptible) did not give any amplicon with both probes and the other one (ciproflocaxcin 

resistant) did not give any amplicon with TAQ2. The most reasonable explanation is that these 

strains carry mutation(s) in the regions of DNA where the probes bind [11]. 

In many studies, strains with a ciprofloxacin MIC of 4 mg l-1 and above were reported to 

have the related mutation where as those with MIC of 0.5 mg l-1 and lower did not [40, 43-49]. In 

a study carried out by Padungtod et al. [50], fluorogenic PCR was used to detect the molecular 

mechanisms of the resistance and the mutation was found to be present in the gyrA of the strain 

with ciprofloxacin MIC of 2 mg l-1; although the strain was considered as susceptible since the 

breakpoint for the resistance was regarded as 4 mg l-1 and over according the CLSI. In another 

study in which breakpoint for resistance was accepted as 0.5 mg l-1 in accordance with EUCAST, 

strains with ciprofloxacin MIC of 1 and 2 mg l-1 were found to have the mutation [41]. On the 

other hand, Hormeno et al. [42] did not detect any mutation by MAMA-PCR in a strain with 

ciprofloxacin MIC of 2 mg l-1. Such discrepancies between the MIC and the presence/absence of 

the mutation may be due to the differences in the methods used for the detection of the mutation.  

There are studies reporting the absence of C257T mutation in some high level resistant 

strains indicating that the mutation in question is not the only mechanism for the resistance [51, 

52]. Point mutations other than Thre86Ile at the codon of 86 such as Thre86Ala, Thre86Lys, 

Thre86Val and mutations outside the codon such as Asp90Asn and Asp90Tyr, that are all related 

with the resistance, have been reported [53, 54, 55]. Moreover, in addition to the point mutations 

in gyrA, a CmeABC efflux pump has also been reported to contribute to the development of 

ciprofloxacin resistance [53-57]. In a recent study, a resistance-enhancing variant of the efflux 

pump that was linked to the enhanced multidrug resistance has been discovered in C. jejuni  of 

animal origin [58].  
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Although numerous gyrA mutations related to the emergence of ciprofloxacin resistance 

have been reported in other countries, in two studies carried out in Turkey, one related with C. 

jejuni of human and the other of chicken isolates, all of the strains that were resistant to 

ciprofloxacin was determined to have C257T mutation at the codon of 86 [17, 28]. Parallel to these 

studies, in the present  study, strains that were found to be resistant and susceptible to ciprofloxacin 

were determined to give different emissions of the reporter fluors with wild type and mutant probes 

in allelic discrimination using Aria-Mx real time PCR system indicating that the system can be 

used accurately for the quick screening of the resistance. Moreover, the present study highlights 

the high rate of ciprofloxacin resistance and the fact that ciprofloxacin should not be used in the 

treatment of Campylobacter infections in Turkey, and that the threonine to isoleucine transition at 

86th codon is the most frequently detected mechanism of the resistance among C. jejuni strains.  
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