79 research outputs found

    Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Get PDF
    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming

    Effects of observed and experimental climate change on terrestrial ecosystems in northern Canada: results from the Canadian IPY program

    Get PDF
    Published VersionTundra and taiga ecosystems comprise nearly 40 % of the terrestrial landscapes of Canada. These permafrost ecosystems have supported humans for more than 4500 years, and are currently home to ca. 115,000 people, the majority of whom are First Nations, Inuit and Métis. The responses of these ecosystems to the regional warming over the past 30–50 years were the focus of four Canadian IPY projects. Northern residents and researchers reported changes in climate and weather patterns and noted shifts in vegetation and other environmental variables. In forest-tundra areas tree growth and reproductive effort correlated with temperature, but seedling establishment was often hindered by other factors resulting in sitespecific responses. Increased shrub cover has occurred in sites across the Arctic at the plot and landscape scale, and this was supported by results from experimental warming. Experimental warming increased vegetation cover and nutrient availability in most tundra soils; however, resistance to warming was also found. Soil microbial diversity in tundra was no different than in other biomes, although there were shifts in mycorrhizal diversity in warming experiments. All sites measured were sinks for carbon during the growing season with expected seasonal and latitudinal patterns. Modeled responses of a mesic tundra system to climate change showed that the sink status will likely continue for the next 50–100 years, after which these tundra systems will likely become a net source of carbon dioxide to the atmosphere. These IPY studies were the first comprehensive assessment of the state and change in Canadian northern terrestrial ecosystems and showed that the inherent variability in these systems is reflected in their site-specific responses to changes in climate. They also showed the importance of using local traditional knowledge and science, and provided extensive data sets, sites and researchers needed to study and manage the inevitable changes in the Canadian North

    Divergence of Arctic shrub growth associated with sea ice decline

    Get PDF
    Arctic sea ice extent (SIE) is declining at an accelerating rate with a wide range of ecological consequences. However, determining sea ice effects on tundra vegetation remains a challenge. In this study, we examined the universality or lack thereof in tundra shrub growth responses to changes in SIE and summer climate across the Pan-Arctic, taking advantage of 23 tundra shrub-ring chronologies from 19 widely distributed sites (56°N to 83°N). We show a clear divergence in shrub growth responses to SIE that began in the mid-1990s, with 39% of the chronologies showing declines and 57% showing increases in radial growth (decreasers and increasers, respectively). Structural equation models revealed that declining SIE was associated with rising air temperature and precipitation for increasers and with increasingly dry conditions for decreasers. Decreasers tended to be from areas of the Arctic with lower summer precipitation and their growth decline was related to decreases in the standardized precipitation evapotranspiration index. Our findings suggest that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity

    Plant traits poorly predict winner and loser shrub species in a warming tundra biome

    Full text link
    Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces

    Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes

    Get PDF
    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms

    Climate sensitivity of shrub growth across the tundra biome

    Get PDF
    The tundra biome is experiencing rapid temperature increases that have been linked to a shift in tundra vegetation composition towards greater shrub dominance. Shrub expansion can amplify warming by altering the surface albedo, energy and water balance, and permafrost temperatures. To account for these feedbacks, global climate models must include realistic projections of vegetation dynamics, and in particular tundra shrub expansion, yet the mechanisms driving shrub expansion remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual growth of shrub species provide a previously untapped resource to explore climate-growth relationships across the tundra biome. We analysed a dataset of approximately 42,000 annual growth records from 1821 individuals, comprising 25 species from eight genera, from 37 arctic and alpine sites. Our analyses demonstrate that the sensitivity of shrub growth to climate was (1) heterogeneous across the tundra biome, (2) greater at sites with higher soil moisture and (3) strongest for taller shrub species growing at the northern or upper elevational edge of their range. Across latitudinal gradients in the Arctic, climate sensitivity of growth was greatest at the boundary between low- and high-arctic vegetation zones, where permafrost conditions are changing and the majority of the global permafrost soil carbon pool is stored. Thus, in order to more accurately estimate feedbacks among shrub change, albedo, permafrost thaw, carbon storage and climate, the observed variation in climate-growth relationships of shrub species across the tundra biome will need to be incorporated into earth system models.JRC.H.3-Forest Resources and Climat

    Can bryophyte groups increase functional resolution in tundra ecosystems?

    Get PDF
    Funding Information: This study was supported by a grant to SL from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, Grant No. 797446 and by the Independent Research Fund Denmark, Grant no. 0135-00140B. Funding from the Academy of Finland (grant 322266), National Science Foundation (1504224, 1836839, PLR-1504381 and PLR-1836898), Independent Research Fund Denmark (9040-00314B), Moscow State University, (project No 121032500089-1), Natural Sciences and Engineering Research Council of Canada, ArcticNet, Polar Continental Shelf Program, Northern Science Training Program, Polar Knowledge Canada, Royal Canadian Mounted Police, Tomsk State University competitiveness improvement program and the Russian Science Foundation (grant No 20-67-46018) are gratefully acknowledged. Matthias Ahrens provided valuable insights on the cushion growth form, and we are most thankful. We thank Gaius Shaver and two anonymous reviewers for providing valuable critique and input to earlier versions of this manuscript. Publisher Copyright: © the author(s) or their institution(s).The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.Peer reviewe

    AMAP 2017. Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis Strait Region

    Get PDF

    Hiding in the background: community-level patterns in invertebrate herbivory across the tundra biome

    Get PDF
    Invertebrate herbivores depend on external temperature for growth and metabolism. Continued warming in tundra ecosystems is proposed to result in increased invertebrate herbivory. However, empirical data about how current levels of invertebrate herbivory vary across the Arctic is limited and generally restricted to a single host plant or a small group of species, so predicting future change remains challenging. We investigated large-scale patterns of invertebrate herbivory across the tundra biome at the community level and explored how these patterns are related to long-term climatic conditions and year-of-sampling weather, habitat characteristics, and aboveground biomass production. Utilizing a standardized protocol, we collected samples from 92 plots nested within 20 tundra sites during summer 2015. We estimated the community-weighted biomass lost based on the total leaf area consumed by invertebrates for the most common plant species within each plot. Overall, invertebrate herbivory was prevalent at low intensities across the tundra, with estimates averaging 0.94% and ranging between 0.02 and 5.69% of plant biomass. Our results suggest that mid-summer temperature influences the intensity of invertebrate herbivory at the community level, consistent with the hypothesis that climate warming should increase plant losses to invertebrates in the tundra. However, most of the observed variation in herbivory was associated with other site level characteristics, indicating that other local ecological factors also play an important role. More details about the local drivers of invertebrate herbivory are necessary to predict the consequences for rapidly changing tundra ecosystems.KeywordsBackground herbivory Biomass loss Climate change Community-weighted average Invertebrate Insects Tundra </div
    corecore