42 research outputs found

    Coexistence but Independent Biosynthesis of Catechyl and Guaiacyl/Syringyl Lignin Polymers in Seed Coats

    Get PDF
    Lignins are phenylpropanoid polymers, derived from monolignols, commonly found in terrestrial plant secondary cell walls. We recently reported evidence of an unanticipated catechyl lignin homopolymer (C lignin) derived solely from caffeyl alcohol in the seed coats of several monocot and dicot plants. We previously identified plant seeds that possessed either C lignin or traditional guaiacyl/syringyl (G/S) lignins, but not both. Here, we identified several dicot plants (Euphorbiaceae and Cleomaceae) that produce C lignin together with traditional G/S lignins in their seed coats. Solution-state NMR analyses, along with an in vitro lignin polymerization study, determined that there is, however, no copolymerization detectable (i.e., that the synthesis and polymerization of caffeyl alcohol and conventional monolignols in vivo is spatially and/or temporally separated). In particular, the deposition of G and C lignins in Cleome hassleriana seed coats is developmentally regulated during seed maturation; C lignin appears successively after G lignin within the same testa layers, concurrently with apparent loss of the functionality of O-methyltransferases, which are key enzymes for the conversion of C to G lignin precursors. This study exemplifies the flexible biosynthesis of different types of lignin polymers in plants dictated by substantial, but poorly understood, control of monomer supply by the cells

    A Genomics Approach to Deciphering Lignin Biosynthesis in Switchgrass

    Get PDF
    Article on a genomics approach to deciphering lignin biosynthesis in switchgrass

    Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression

    Get PDF
    Cinnamoyl-CoA reductase (CCR), which catalyses the first committed step of the lignin-specific branch of monolignol biosynthesis, has been extensively characterized in dicot species, but few data are available in monocots. By screening a Mu insertional mutant collection in maize, a mutant in the CCR1 gene was isolated named Zmccr1ā€“. In this mutant, CCR1 gene expression is reduced to 31% of the residual wild-type level. Zmccr1ā€“ exhibited enhanced digestibility without compromising plant growth and development. Lignin analysis revealed a slight decrease in lignin content and significant changes in lignin structure. p-Hydroxyphenyl units were strongly decreased and the syringyl/guaiacyl ratio was slightly increased. At the cellular level, alterations in lignin deposition were mainly observed in the walls of the sclerenchymatic fibre cells surrounding the vascular bundles. These cell walls showed little to no staining with phloroglucinol. These histochemical changes were accompanied by an increase in sclerenchyma surface area and an alteration in cell shape. In keeping with this cell type-specific phenotype, transcriptomics performed at an early stage of plant development revealed the down-regulation of genes specifically associated with fibre wall formation. To the present authorsā€™ knowledge, this is the first functional characterization of CCR1 in a grass species

    Rice Snl6, a Cinnamoyl-CoA Reductase-Like Gene Family Member, Is Required for NH1-Mediated Immunity to Xanthomonas oryzae pv. oryzae

    Get PDF
    Rice NH1 (NPR1 homolog 1) is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo), constitutive expression of defense related genes and enhanced benzothiadiazole (BTH)- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR)-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development
    corecore