1,049 research outputs found
Neural Machine Translation into Language Varieties
Both research and commercial machine translation have so far neglected the
importance of properly handling the spelling, lexical and grammar divergences
occurring among language varieties. Notable cases are standard national
varieties such as Brazilian and European Portuguese, and Canadian and European
French, which popular online machine translation services are not keeping
distinct. We show that an evident side effect of modeling such varieties as
unique classes is the generation of inconsistent translations. In this work, we
investigate the problem of training neural machine translation from English to
specific pairs of language varieties, assuming both labeled and unlabeled
parallel texts, and low-resource conditions. We report experiments from English
to two pairs of dialects, EuropeanBrazilian Portuguese and European-Canadian
French, and two pairs of standardized varieties, Croatian-Serbian and
Indonesian-Malay. We show significant BLEU score improvements over baseline
systems when translation into similar languages is learned as a multilingual
task with shared representations.Comment: Published at EMNLP 2018: third conference on machine translation (WMT
2018
Transfer Learning in Multilingual Neural Machine Translation with Dynamic Vocabulary
We propose a method to transfer knowledge across neural machine translation
(NMT) models by means of a shared dynamic vocabulary. Our approach allows to
extend an initial model for a given language pair to cover new languages by
adapting its vocabulary as long as new data become available (i.e., introducing
new vocabulary items if they are not included in the initial model). The
parameter transfer mechanism is evaluated in two scenarios: i) to adapt a
trained single language NMT system to work with a new language pair and ii) to
continuously add new language pairs to grow to a multilingual NMT system. In
both the scenarios our goal is to improve the translation performance, while
minimizing the training convergence time. Preliminary experiments spanning five
languages with different training data sizes (i.e., 5k and 50k parallel
sentences) show a significant performance gain ranging from +3.85 up to +13.63
BLEU in different language directions. Moreover, when compared with training an
NMT model from scratch, our transfer-learning approach allows us to reach
higher performance after training up to 4% of the total training steps.Comment: Published at the International Workshop on Spoken Language
Translation (IWSLT), 201
Quark Model and Neutral Strange Secondary Production by Neutrino and Antineutrino Beams
The experimental data on and production by and
beams are compared with the predictions of quark model assuming
that the direct production of secondaries dominates. Disagreement of these
predictions with the data allows one to suppose that there exists considerable
resonance decay contribution to the multiplicities of produced secondaries.Comment: 6 pages, no figures, 2 table
The Atlantic Water boundary current north of Svalbard in late summer
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2269–2290, doi:10.1002/2016JC012486.Data from a shipboard hydrographic/velocity survey carried out in September 2013 of the region north of Svalbard in the Nansen Basin are analyzed to characterize the Atlantic Water (AW) boundary current as it flows eastward along the continental slope. Eight meridional transects across the current, spanning an alongstream distance of 180 km, allow for a detailed description of the current and the regional water masses. During the survey the winds were light and there was no pack-ice. The mean section reveals that the boundary current was O(40 km) wide, surface-intensified, with a maximum velocity of 20 cm/s. Its mean transport during the survey was 3.11 ± 0.33 Sv, of which 2.31 ± 0.29 Sv was AW. This suggests that the two branches of AW entering the Arctic Ocean via Fram Strait—the Yermak Plateau branch and the Svalbard branch—have largely combined into a single current by 30°E. At this location the boundary current meanders with a systematic change in its kinematic structure during offshore excursions. A potential vorticity analysis indicates that the flow is baroclinically unstable, consistent with previous observations of AW anticyclones offshore of the current as well as the presence of a near-field cyclone in this data set. Our survey indicates that only a small portion of the boundary current is diverted into the Kvitøya Trough (0.17 ± 0.08 Sv) and that the AW temperature/salinity signal is quickly eroded within the trough.National Science Foundation Grant Number: ARC-12640982017-09-2
Multi-wavelength observations of afterglow of GRB 080319B and the modeling constraints
We present observations of the afterglow of GRB 080319B at optical, mm and
radio frequencies from a few hours to 67 days after the burst. Present
observations along with other published multi-wavelength data have been used to
study the light-curves and spectral energy distributions of the burst
afterglow. The nature of this brightest cosmic explosion has been explored
based on the observed properties and it's comparison with the afterglow models.
Our results show that the observed features of the afterglow fits equally good
with the Inter Stellar Matter and the Stellar Wind density profiles of the
circum-burst medium. In case of both density profiles, location of the maximum
synchrotron frequency is below optical and the value of cooling break
frequency is below rays, s after the burst. Also, the
derived value of the Lorentz factor at the time of naked eye brightness is
with the corresponding blast wave size of cm. The
numerical fit to the multi-wavelength afterglow data constraints the values of
physical parameters and the emission mechanism of the burst.Comment: 8 Pages, 3 Figures, Accepted for publication to Astronomy and
Astrophysics on 02/04/200
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Production of mesons by high energy neutrinos from the Tevatron
Charged vector meson production is studied in a high energy neutrino bubble chamber experiment with mean neutrino energy of 141 GeV. The are produced in of the neutrino charged current interactions, indicating a steep increase of cross section with energy. The mean fractional hadronic energy of the meson is
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- …
