1,606 research outputs found
Identification of {HNRNPK} as Regulator of Hepatitis {C} Virus Particle Production
Hepatitis C virus (HCV) is a major cause of chronic liver disease affecting around 130 million people worldwide. While great progress has been made to define the principle steps of the viral life cycle, detailed knowledge how HCV interacts with its host cells is still limited. To overcome this limitation we conducted a comprehensive whole-virus RNA interference-based screen and identified 40 host dependency and 16 host restriction factors involved in HCV entry/replication or assembly/release. Of these factors, heterogeneous nuclear ribonucleoprotein K (HNRNPK) was found to suppress HCV particle production without affecting viral RNA replication. This suppression of virus production was specific to HCV, independent from assembly competence and genotype, and not found with the related Dengue virus. By using a knock-down rescue approach we identified the domains within HNRNPK required for suppression of HCV particle production. Importantly, HNRNPK was found to interact specifically with HCV RNA and this interaction was impaired by mutations that also reduced the ability to suppress HCV particle production. Finally, we found that in HCV-infected cells, subcellular distribution of HNRNPK was altered; the protein was recruited to sites in close proximity of lipid droplets and colocalized with core protein as well as HCV plus-strand RNA, which was not the case with HNRNPK variants unable to suppress HCV virion formation. These results suggest that HNRNPK might determine efficiency of HCV particle production by limiting the availability of viral RNA for incorporation into virions. This study adds a new function to HNRNPK that acts as central hub in the replication cycle of multiple other viruses
Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC
While the tracking detectors of the ATLAS and CMS experiments have shown
excellent performance in Run 1 of LHC data taking, and are expected to continue
to do so during LHC operation at design luminosity, both experiments will have
to exchange their tracking systems when the LHC is upgraded to the
high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems
need to operate in an environment in which both the hit densities and the
radiation damage will be about an order of magnitude higher than today. In
addition, the new trackers need to contribute to the first level trigger in
order to maintain a high data-taking efficiency for the interesting processes.
Novel detector technologies have to be developed to meet these very challenging
goals. The German groups active in the upgrades of the ATLAS and CMS tracking
systems have formed a collaborative "Project on Enabling Technologies for
Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was
supported by the Helmholtz Alliance "Physics at the Terascale" during the years
2013 and 2014. The aim of the project was to share experience and to work
together on key areas of mutual interest during the R&D phase of these
upgrades. The project concentrated on five areas, namely exchange of
experience, radiation hardness of silicon sensors, low mass system design,
automated precision assembly procedures, and irradiations. This report
summarizes the main achievements
The intracellular detection of MIP-1beta enhances the capacity to detect IFN-gamma mediated HIV-1-specific CD8 T-cell responses in a flow cytometric setting providing a sensitive alternative to the ELISPOT
<p>Abstract</p> <p>Background</p> <p>T-cell mediated immunity likely plays an important role in controlling HIV-1 infection and progression to AIDS. Several candidate vaccines against HIV-1 aim at stimulating cellular immune responses, either alone or together with the induction of neutralizing antibodies, and assays able to measure CD8 and CD4 T-cell responses need to be implemented. At present, the IFN-γ-based ELISPOT assay is considered the gold standard and it is broadly preferred as primary assay for detection of antigen-specific T-cell responses in vaccine trials. However, in spite of its high sensitivity, the measurement of the sole IFN-γ production provides limited information on the quality of the immune response. On the other hand, the introduction of polychromatic flow-cytometry-based assays such as the intracellular cytokine staining (ICS) strongly improved the capacity to detect several markers on a single cell level.</p> <p>Results</p> <p>The cumulative analysis of 275 samples from 31 different HIV-1 infected individuals using an ICS staining procedure optimized by our laboratories revealed that, following antigenic stimulation, IFN-γ producing T-cells were also producing MIP-1β whereas T-cells characterized by the sole production of IFN-γ were rare. Since the analysis of the combination of two functions decreases the background and the measurement of the IFN-γ+ MIP-1β+ T-cells was equivalent to the measurement of the total IFN-γ+ T-cells, we adopted the IFN-γ+ MIP-1β+ data analysis system to evaluate IFN-γ-based, antigen-specific T-cell responses. Comparison of our ICS assay with ELISPOT assays performed in two different experienced laboratories demonstrated that the IFN-γ+ MIP-1β+ data analysis system increased the sensitivity of the ICS up to levels comparable to the sensitivity of the ELISPOT assay.</p> <p>Conclusion</p> <p>The IFN-γ+ MIP-1β+ data evaluation system provides a clear advantage for the detection of low magnitude HIV-1-specific responses. These results are important to guide the choice for suitable highly sensitive immune assays and to build reagent panels able to accurately characterize the phenotype and function of responding T-cells. More importantly, the ICS assay can be used as primary assay to evaluate HIV-1-specific responses without losing sensitivity in comparison to the ELISPOT assay.</p
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Search for anomalous t t-bar production in the highly-boosted all-hadronic final state
A search is presented for a massive particle, generically referred to as a
Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are
sufficiently massive to produce highly Lorentz-boosted top quarks, which yield
collimated decay products that are partially or fully merged into single jets.
The analysis uses new methods to analyze jet substructure, providing
suppression of the non-top multijet backgrounds. The analysis is based on a
data sample of proton-proton collisions at a center-of-mass energy of 7 TeV,
corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits
in the range of 1 pb are set on the product of the production cross section and
branching fraction for a topcolor Z' modeled for several widths, as well as for
a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any
enhancement in t t-bar production beyond expectations of the standard model for
t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version
includes a minor typo correction that will be submitted as an erratu
Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV
The t t-bar production cross section (sigma[t t-bar]) is measured in
proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS
experiment, corresponding to an integrated luminosity of 2.3 inverse
femtobarns. The measurement is performed in events with two leptons (electrons
or muons) in the final state, at least two jets identified as jets originating
from b quarks, and the presence of an imbalance in transverse momentum. The
measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/-
2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction
of the standard model.Comment: Replaced with published version. Included journal reference and DO
- …