45 research outputs found

    Dietary Interventions to Modulate the Gut Microbiome-How Far Away Are We From Precision Medicine

    Get PDF
    The importance of the gut microbiome in human health and disease is fully acknowledged. A perturbation in the equilibrium among the different microbial populations living in the gut (dysbiosis) has been associated with the development of several types of diseases. Modulation of the gut microbiome through dietary intervention is an emerging therapeutic and preventive strategy for many conditions. Nevertheless, interpersonal differences in response to therapeutic treatments or dietary regimens are often observed during clinical trials, and recent research has suggested that subject-specific features of the gut microbiota may be responsible. In this review, we summarize recent findings in personalized nutrition, highlighting how individualized characterization of the microbiome may assist in designing ad hoc tailored dietary intervention for disease treatment and prevention. Moreover, we discuss the limitations and challenges encountered in integrating patient-specific microbial data into clinical practice

    Saliva from obese individuals suppresses the release of aroma compounds from wine.

    Get PDF
    BackgroundRecent evidence suggests that a lower extent of the retronasal aroma release correspond to a higher amount of ad libitum food intake. This has been regarded as one of the bases of behavioral choices towards food consumption in obese people. In this pilot study we investigated the hypothesis that saliva from obese individuals could be responsible for an alteration of the retro-nasal aroma release. We tested this hypothesis in vitro, by comparing the release of volatiles from a liquid food matrix (wine) after its interaction with saliva from 28 obese (O) and 28 normal-weight (N) individuals.Methods and findingsAmplicon sequencing of the 16S rRNA V4 region indicated that Firmicutes and Actinobacteria were more abundant in O, while Proteobacteria and Fusobacteria dominated in N. Streptococcaceae were significantly more abundant in the O subjects and constituted 34% and 19% on average of the saliva microbiota of O and N subjects, respectively. The Total Antioxidant Capacity was higher in O vs N saliva samples. A model mouth system was used to test whether the in-mouth wine aroma release differs after the interaction with O or N saliva. In O samples, a 18% to 60% significant decrease in the mean concentration of wine volatiles was detected as a result of interaction with saliva, compared with N. This suppression was linked to biochemical differences in O and N saliva composition, which include protein content.ConclusionMicrobiological and biochemical differences were found in O vs N saliva samples. An impaired retronasal aroma release from white wine was detected in vitro and linked to compositional differences between saliva from obese and normal-weight subjects. Additional in vivo investigations on diverse food matrices could contribute to understanding whether a lower olfactory stimulation due to saliva composition can be a co-factor in the development/maintenance of obesity

    Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis

    Get PDF
    Coffee consumption is inversely associated with the risk of non-alcoholic fatty liver disease (NAFLD). A gap in the literature still exists concerning the intestinal mechanisms that are involved in the protective effect of coffee consumption towards NAFLD. In this study, twenty-four C57BL/6J mice were divided into three groups each receiving a standard diet, a high-fat diet (HFD) or an HFD plus decaffeinated coffee (HFD+COFFEE) for 12 weeks. Coffee supplementation reduced HFD-induced liver macrovesicular steatosis (P\ua0<\ua00\ub701) and serum cholesterol (P\ua0<\ua00\ub7001), alanine aminotransferase and glucose (P\ua0<\ua00\ub705). Accordingly, liver PPAR- \u3b1 (P\ua0<\ua00\ub705) and acyl-CoA oxidase-1 (P\ua0<\ua00\ub705) as well as duodenal ATP-binding cassette (ABC) subfamily A1 (ABCA1) and subfamily G1 (ABCG1) (P\ua0<\ua00\ub705) mRNA expressions increased with coffee consumption. Compared with HFD animals, HFD+COFFEE mice had more undigested lipids in the caecal content and higher free fatty acid receptor-1 mRNA expression in the duodenum and colon. Furthermore, they showed an up-regulation of duodenal and colonic zonulin-1 (P\ua0<\ua00\ub705), duodenal claudin (P\ua0<\ua00\ub705) and duodenal peptide YY (P\ua0<\ua00\ub705) mRNA as well as a higher abundance of Alcaligenaceae in the faeces (P\ua0<\ua00\ub705). HFD+COFFEE mice had an energy intake comparable with HFD-fed mice but starting from the eighth intervention week they gained significantly less weight over time. Data altogether showed that coffee supplementation prevented HFD-induced NAFLD in mice by reducing hepatic fat deposition and metabolic derangement through modification of pathways underpinning liver fat oxidation, intestinal cholesterol efflux, energy metabolism and gut permeability. The hepatic and metabolic benefits induced by coffee were accompanied by changes in the gut microbiota

    Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake

    Get PDF
    ObjectivesThis study aimed to explore the effects of an isocaloric Mediterranean diet (MD) intervention on metabolic health, gut microbiome and systemic metabolome in subjects with lifestyle risk factors for metabolic disease.DesignEighty-two healthy overweight and obese subjects with a habitually low intake of fruit and vegetables and a sedentary lifestyle participated in a parallel 8-week randomised controlled trial. Forty-three participants consumed an MD tailored to their habitual energy intakes (MedD), and 39 maintained their regular diets (ConD). Dietary adherence, metabolic parameters, gut microbiome and systemic metabolome were monitored over the study period.ResultsIncreased MD adherence in the MedD group successfully reprogrammed subjects' intake of fibre and animal proteins. Compliance was confirmed by lowered levels of carnitine in plasma and urine. Significant reductions in plasma cholesterol (primary outcome) and faecal bile acids occurred in the MedD compared with the ConD group. Shotgun metagenomics showed gut microbiome changes that reflected individual MD adherence and increase in gene richness in participants who reduced systemic inflammation over the intervention. The MD intervention led to increased levels of the fibre-degrading Faecalibacterium prausnitzii and of genes for microbial carbohydrate degradation linked to butyrate metabolism. The dietary changes in the MedD group led to increased urinary urolithins, faecal bile acid degradation and insulin sensitivity that co-varied with specific microbial taxa.ConclusionSwitching subjects to an MD while maintaining their energy intake reduced their blood cholesterol and caused multiple changes in their microbiome and metabolome that are relevant in future strategies for the improvement of metabolic health

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
    corecore