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Abstract

The salivary microbiota has been linked to both oral and non-oral diseases. Scant knowledge is available on the effect of
environmental factors such as long-term dietary choices on the salivary microbiota and metabolome. This study analyzed
the microbial diversity and metabolomic profiles of the saliva of 161 healthy individuals who followed an omnivore or ovo-
lacto-vegetarian or vegan diet. A large core microbiota was identified, including 12 bacterial genera, found in .98% of the
individuals. The subjects could be stratified into three ‘‘salivary types’’ that differed on the basis of the relative abundance of
the core genera Prevotella, Streptococcus/Gemella and Fusobacterium/Neisseria. Statistical analysis indicated no effect of
dietary habit on the salivary microbiota. Phylogenetic beta-diversity analysis consistently showed no differences between
omnivore, ovo-lacto-vegetarian and vegan individuals. Metabolomic profiling of saliva using 1H-NMR and GC-MS/SPME
identified diet-related biomarkers that enabled a significant discrimination between the 3 groups of individuals on the basis
of their diet. Formate, urea, uridine and 5-methyl-3-hexanone could discriminate samples from omnivores, whereas 1-
propanol, hexanoic acid and proline were characteristic of non-omnivore diets. Although the salivary metabolome can be
discriminating for diet, the microbiota has a remarkable inter-individual stability and did not vary with dietary habits.
Microbial homeostasis might be perturbed with sub-standard oral hygiene or other environmental factors, but there is no
current indication that a choice of an omnivore, ovo-lacto-vegetarian or vegan diet can lead to a specific composition of the
oral microbiota with consequences on the oral homeostasis.
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Introduction

The oral cavity is exposed to the external environment and is,

therefore, one of the most important ways of microbial entry in the

human body. Saliva plays a pivotal role in the maintenance of oral

homeostasis and protection from disease [1]. The study of the oral

microbiome is fundamental to understanding how and why oral

microbial complexity can switch from a protective role to being a

cause of disease [2]. Several studies have reported on the salivary

microbiota as related to oral disease [3–6] and a gradual changing

of the oral microbial community (dysbiosis) can progressively lead

to a state of clinical disease [7]. Recently, a metatranscriptome

study carried out on salivary microbiome revealed differences in

microbial gene expression in case of oral disbyosis [8]. The recent

literature also reports associations between the salivary microbiota

and non-oral disease. Specific microbial consortia have been

associated with obesity [9,10], cancer [11,12], HIV [13],

inflammatory bowel disease [14], and atherosclerosis [15]. The

possible value of the salivary microbiota for the early diagnosis of

disease has also been noted [2]. A high degree of microbial

diversity was reported for oral environments [16–18], and this

level of diversity decreases in cases of oral diseases [2]. The

association between high diversity and oral health suggests that

each member of the complex microbial community has a function

in maintaining homeostasis in the oral cavity. In this context, it is

likely that a core microbiota in the saliva of healthy humans exists

[19] and that it can play a protective role in the health of the oral

environment.

Some important issues to address are the factors affecting the

structure of the oral microbiota and understanding how the
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homeostasis of microbial complexity might be perturbed in a way

leading to a predisposition to disease. To date, studies enrolling a

significant number of individuals have demonstrated that the

salivary microbiota does not vary markedly with geographic

location [16], and is very stable, such that individuals maintain

very similar microbiota over time [17,20]. It was hypothesized that

environmental factors such as dietary behavior and oral hygiene

can have the most significant effect on the oral microbial

composition [17]. Nevertheless, there are no studies linking oral

microbiota to dietary habits.

Salivary metabolomics, mainly based on 1H nuclear magnetic

resonance (1H-NMR) spectroscopy and mass spectrometry, have

been used for the high-throughput identification of disease-

associated salivary biomarkers and to facilitate the early diagnosis

of several diseases [21,22]. Salivary metabolomic profiles can be

affected by both physiological and environmental factors [23].

Although it is well known that nutrition influences health and

metabolism in many ways and a study on the role of dietary

intervention in affecting dental health was recently carried out

[24], comparatively little knowledge is available on the effect of

dietary habits on the salivary microbiota and metabolome. The

choice of following ovo-lacto-vegetarian or vegan diets is

increasing worldwide due to the increasingly important benefits

that such diets can have on human health, including possible

prevention of cardio-vascular diseases (CVD), cancer and diabetes

[25,26]. However, it remains unclear whether such long-term

dietary choices impact the human microbiome.

In this study, we analyzed the microbial diversity and

metabolomic profiles of the saliva from 161 healthy individuals

who had been following an omnivore, an ovo-lacto-vegetarian or a

vegan diet for at least one year. We investigated whether dietary

habits can have an impact in shaping the salivary microbiota and

metabolome and whether they can alter its composition, creating a

potential predisposition to disease.

Results

In this study, we analyzed the microbial diversity and

metabolomic profiles of the saliva from 161 healthy individuals

who followed an omnivore, an ovo-lacto-vegetarian or a vegan

diet. We sequenced amplicons of the V1–V3 regions of the 16S

rRNA gene. Moreover, we analysed the salivary metabolome

through 1H-NMR and GC-MS/SPME.

Microbial diversity and a core microbiome in saliva
A total of 1,218,865 raw V1–V3 16S rRNA gene sequences

were obtained through 454 pyrosequencing; 904,233 reads passed

the filters of QIIME split_library.py script, with an average value

of 5,616 reads/sample and an average length of 496 bp. The

results of the a-diversity analysis are reported in Table S1. The

Good’s Estimated Sample Coverage was above 97% in 90% of the

samples (range 92–98%). A high level of microbial diversity was

found in the saliva samples, with an average number of estimated

Operational Taxonomic Units (OTUs) of 313687.3. A Kruskal-

Wallis non-parametric ANOVA did not show significant differ-

ences (P.0.05) between alpha-diversity parameters in the saliva of

omnivore, ovo-lacto-vegetarian or vegan individuals.

OTUs were picked at 99% of similarity and two different

databases were used for the taxonomic assignment. Since the

results were not significantly different as measured by Wilcoxon-

Mann-Whitney tests (P.0.05), the OTU table obtained through

the Greengenes taxa assignment was used for the subsequent

analyses. A core salivary microbiota was defined at the species

level, including 14 OTUs, and occurred in at least 98% of the

individuals (Table S2). The genera belonged to the phyla

Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, Actino-

bacteria and TM7 (Figure 1). Although the genera reported in

Figure 1 were common to almost all the saliva samples, their

abundances varied according to the individual. The box plot

shows a considerable inter-individual variability of abundance.

Only Prevotella sp. and Streptococcus sp. had a median relative

abundance .10% (Figure 1). The core group occurring in 100%

of the individuals included Actinomyces odontolyticus, Prevotella
sp., Granulicatella sp., Gemella sanguinis, Streptococcus sp. and

Leptotrichia sp. (Table S2).

The salivary microbiota is not correlated to dietary habit
Using ADONIS, ANOSIM and MRPP methods, we observed

no effect of dietary habit on the salivary microbiota (P,0.001).

Accordingly, the b–diversity through weighted and unweighted

UniFrac distance matrices did not show a separation between the

omnivore, ovo-lacto-vegetarian or vegan individuals (Figure S1).

Similarly, no influence of sex, age, site of collection or BMI was

observed (P.0.05).

A PAM cluster analysis of the saliva samples was performed,

and the Calinski-Harabasz index indicated that the optimal

number of clusters was three. The cluster analysis indicated that

the abundance of the core genera could drive the grouping of the

individuals in three ‘‘salivary types’’: cluster I was characterized by

a higher abundance of Neisseria and Fusobacterium; cluster II was

distinguished by Prevotella and cluster III by Streptococcus and

Gemella; Porphyromonas was associated with both clusters I and

III (Figure 2). Each of the above genera dominated in the

corresponding cluster. As shown in the box plots, the median

abundance of Prevotella and Streptococcus was approximately

30% in clusters 2 and 3, respectively (Figure 2). The taxa

composition of the three ‘‘salivary types’’ were found to be

significantly different using ADONIS (P,0.001) and ANOSIM

(P,0.001). No significant association was found between dietary

habit and ‘‘salivary type’’ (P.0.05), and each of the PAM clusters

included saliva samples of the omnivore as well as the ovo-lacto-

vegetarian and vegan individuals.

OTU co-occurrence and/or co-exclusion
The OTU co-occurrence was investigated by considering the

genus-level taxonomic assignment and significant correlations at

FDR,0.05 (Figure 3). Streptococcus showed the highest number

of negative correlations, including the core-OTUs Fusobacterium
and Leptotrichia. Within the core-OTUs, Granulicatella and

Gemella co-occurred; they were correlated negatively to Prevotella
and positively to Streptococcus. Actinomyces showed multiple

negative correlations, including to Neisseria and Haemophilus.
Porphyromonas was co-excluded with Prevotella and Veillonella-
ceae. The members of SR1 showed a co-occurrence with

Capnocytophaga and TM7 with Clostridia. Taken together, the

genera of Fusobacteriaceae, Lachnospiraceae and Campylobacter-
iaceae showed positive associations (Figure 3). Overall, the most

abundant core genera that determined the stratification of the

‘‘salivary types’’ (Figure 2) showed a consistent mutual co-

exclusion.

Metabolome profiles
Metabolic profiling through 1H-NMR and GC-MS/SPME

analyses detected and identified 49 (organic acids, free amino

acids, monosaccharides and short-chain fatty acids) and 81

(alcohols, phenols, aldehydes, esters, ketones, hydrocarbons,

aromatic heterocyclic compounds, sulfur compounds, tiophenes

and terpenes) compounds, respectively (data not shown). No

Salivary Microbiome and Dietary Habits
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significant differences were found in the metabolite concentrations

according to age, sex, site of collection or BMI (P.0.05).

PLS-DA regression based on the 1H-NMR and Gas-chroma-

tography mass spectrometry-solid-phase microextraction (GC-

MS/SPME) significantly different compounds (P,0.05) resulted

in models allowing a significant discrimination of the 3 groups of

individuals with 2 latent variables (Figure 4). The correct

classification rates for the omnivore, vegan and ovo-lacto-

vegetarian individuals were 0.69, 0.67 and 0.64 for the 1H-

NMR profiles and 0.64, 0.60 and 0.62 for the GC-MS/SPME

profiles, respectively. Discrimination based on the 1H-NMR data

was ascribed mainly to formate, urea and uridine, which showed

higher levels in the omnivore individuals, and to hexanoic acid and

proline, with higher levels in the non-omnivores. Moreover, the

differentiation within the two non-omnivore groups was mainly

attributed to methyl-amine, which was more abundant in the

saliva of the vegan subjects, and methyl-histidine, which showed

the highest levels in the ovo-lacto-vegetarians (Figure 4). The

compounds from the GC-MS/SPME spectra with the highest

discriminative ability included 1-propanol for the non-omnivores

and 5-methyl-3-hexanone for the omnivores (Figure 4).

OTU-metabolite co-occurrence and co-exclusion
All the significant (FDR,0.05) correlations between salivary

OTUs and metabolites are reported in Figure 5. Streptococcus had

the highest number of significant correlations, with soluble and

volatile metabolites detected in the saliva samples. In particular,

Streptococcus was positively correlated with 1-methyl-histidine,

methyl-benzaldehyde and urea (Figure 5). The occurrence of

Prevotella was significantly associated with 4-hydroxyphenylacetic

acid (4HPA) and tyrosine. Actinomyces showed positive, although

weak, correlations with seven different molecules, whereas many

different OTUs were negatively correlated with 1,2,4-trimethyl-

benzene and toluene (Figure 5).

Discussion

Negligible effect of dietary habits on the salivary
microbiome

We demonstrated that long-term dietary habits have no effect in

shaping the salivary microbiota. To the best of our knowledge,

data on the salivary microbiome as affected by diet had not been

available. Recent advances in human microbiome studies have

shown how diet can promptly cause changes in the gut

microbiome [27], though such evidence was gathered by inducing

a forced short-term diet change in human subjects and was not a

comparison between different long-term dietary habits. The

individuals recruited in the present study followed the same type

of diet for at least one year; they could be regarded as habitual

omnivores, ovo-lacto-vegetarians or vegans, and thus be studied to

infer the consequences of prolonged dietary lifestyle.

In agreement with other studies [17,18,28,29], the alpha

diversity analysis showed that the saliva samples were complex

ecosystems characterized by a high number of OTUs. A core

microbiota, as defined by the Human Microbiome consortium

[30], was identified in the present study. Other studies showed the

presence of a core microbiota in the saliva of healthy individuals

[17,18,28], and compared to other body sites, the oral environ-

ment appears to have the largest core [29]. Stahringer et al. [17]

found a core of 8 genera in .95% of the saliva samples from 107

healthy individuals. A larger core, consisting of 12 different genera

in .98% of individuals, was found in our study. In addition to the

8 genera shown previously [17], Porphyromonas, Leptotrichia,

Haemophilus, Actinomyces and the TM7-3 class were also found as

members of the core taxa. The classical periodontal pathogen

Aggregatibacter actinomycetemcomitans [31,32,33] was identified

only in one subject. Treponema socranskii and Porphyromonas
gingivalis, reported in patients with periodontal diseases [32,34],

were found in 31 and 3 individuals out of 161, respectively,

although they were never abundant (,0.1%). Overall, in none of

the subjects the salivary microbiota suggested a state of oral disease

and none of the disease-related OTUs was significantly associated

to a specific dietary habit (P.0.05).

It should be pointed out that these results can be influenced by

the OTU clustering methodology. Recent studies showed that

oligotyping (a new clustering-free approach) was able to detect a

higher number of species than traditional OTU clustering

techniques and that each OTU can be split into several distinct

subpopulations, all ecologically distinct but with 16S tags differing

by as little as one nucleotide [35,36].

To the best of our knowledge, no studies exist about the

influence of dietary choices on salivary microbiota and about the

possible effect of a long-term vegetarian or vegan diets in inducing

changes in the microbial composition/abundance, compared to a

‘‘typical’’ omnivore oral microbiota. Overall, our results excluded

Figure 1. Abundance (%) of the 14 bacterial species identified in 98% of the saliva samples (n = 161). Boxes represent the interquartile
range (IQR) between the first and third quartiles, and the line inside represents the median (2nd quartile). Whiskers denote the lowest and the highest
values within 1.56IQR from the first and third quartiles, respectively. Circles represent outliers beyond the whiskers. The boxes are grouped according
to phylum.
doi:10.1371/journal.pone.0112373.g001
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that vegan or ovo-lacto-vegetarian diets could significantly impact

on the salivary microbiota.

Abundances of core microbial taxa lead to ‘‘salivary
types’’ and co-occurrence patterns

The abundance of some of the core genera across the samples

resulted in a grouping of the individuals by PAM clustering.

Although the analysis showed a high similarity within the

population, and the three clusters shared a certain number of

microbial genera, three possible ‘‘salivary types’’ were distin-

guished including: the core microbial genera [I] Neisseria-

Fusobacterium, [II] Prevotella and [III] Streptococcus-Gemella.

Therefore, although the core genera were common to the saliva of

all the subjects, the abundance of Fusobacteria/Proteobacteria,

Bacteroidetes and Firmicutes enabled a differentiation between the

individuals. The three clusters included individuals independently

on diet, age, sex, site of collection or BMI. The same clustering

method has been used to identify enterotypes from the human gut

microbiota [37]. Nevertheless, very recently, it was noted that the

groupings obtained should not be considered as discrete clusters

but as a simplified stratification of the samples [38]. In our study,

PAM analysis indicated that the individuals had a trend of

differentiation based on the relative abundance of taxa belonging

to the core microbiota. Similarly, although not identically, a

clustering of saliva samples was found through the analysis of 16S

rRNA genes by non-sequencing-based approaches [39]: the

clusters were linked to oral health, and Prevotella and Streptococ-
cus clusters were associated with wider periodontal pockets.

The microbial co-occurrence/exclusion pattern is suggested to

be specific for each body site: it is particularly evident for the oral

cavity and is correlated to phylogenetic relatedness [40]. Species

with similar nutritional needs tend to co-occur according to the

availability of the specific nutrients [41]. The results of our study

indicate that the core microbial genera of Firmicutes (including

Streptococcus, Gemella and Granulicatella) or Bacteroidetes

(Prevotella and Porphyromonas) tend to dominate the salivary

microbiota and to exclude other bacterial taxa. Furthermore, co-

exclusion was found between Proteobacteria (Neisseria and

Pasteurellaceae) and Actinobacteria (Actinomyces). The cause

and consequences of such co-occurrence/exclusions certainly

include nutrient consumption, metabolite release and synergism/

antagonism dynamics [40]. Details on such mechanisms are still

unresolved. However, the relationships between microbial popu-

lations, as highlighted in the healthy individuals of this study,

suggest that equilibrium among species exists regardless of dietary

lifestyle.

Salivary metabolome differentiates dietary habits
Most of the detected compounds identified in this study are

consistent with those previously reported in the saliva of healthy

individuals [23,42–45]. Their possible entry routes into the

salivary flow are very diverse and can include environmental

exposure through the inhalation of air and/or water vapor

ingestion, food intake, transdermal absorption, blood, oro-nasal

tissues and gastrointestinal reflux.

Using 1H-NMR- and GC-MS/SPME-based metabolomics, this

study revealed differences in the salivary metabolites of healthy

individuals, which correlated with dietary habits. Indeed, several

compounds detected through both techniques were found to be

significantly different among the three diet groups. PLS-DA

Figure 2. OTU abundance drives the differentiation of salivary
types. (A) Between-class analysis visualizing the results from PCA and
clustering based on the Jensen-Shannon distance of the saliva samples
analyzed in this study (n = 161) showing a stratification of the samples
into three salivary types (ST). The two principal components were
plotted using the ade4 package in R with each sample represented by a
circle. The center of gravity for each cluster is marked by a rectangle
indicating the ST, and the ellipse covers 67% of the samples belonging

to the cluster. Only those OTUs which showed a loading score . = 0.7
are shown in the figure. (B) Abundance (%) of the main contributors of
each salivary type. See Fig. 1 for a definition of the box plot.
doi:10.1371/journal.pone.0112373.g002
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models built on their concentration were able to discriminate

between omnivore and non-omnivore individuals, so that dietary

habits of the individuals could be correctly predicted in 70% of the

cases. This differentiation is ascribed to the different levels of

various molecules, such as urea, uridine and formate. Although the

origin of some compounds is unclear, others may be attributed to

human physiological metabolism. A contribution of oral microbi-

ota metabolism and food intake can also be hypothesized,

although it is clear that the salivary taxonomic composition is

not linked to diet and presumably does not contribute to the

metabolomic differentiation of the saliva samples. Urea is derived

from protein digestion, and it has been widely recognized as a

biomarker of animal protein consumption in addition to creatine,

creatinine, histidine and trimethylamine-N-oxide [46,47]. Urea is

released continuously in salivary secretions, and its hydrolysis by

oral bacteria is the primary route for generating alkali in dental

plaque, which is important for oral homeostasis and caries

prevention [48]. Indeed, urea is the main factor responsible for

the basic pH of the saliva of omnivores [49]. The acidic saliva of

non-omnivores, with particular reference to vegans, has been

indicated as the main cause of the high incidence of dental lesions,

together with the mechanical action of chewing highly fibrous food

[50].

Significantly higher levels of formate were observed in

omnivores. This may be related to the activity of the oral bacteria

that can degrade nitrogenous compounds associated with a meat-

rich diet into small peptides and amino acids for subsequent use.

The downstream amino acid degradation can generate formate.

However, the OTU-metabolite correlation analysis revealed a

very weak correlation between formate and microbial species.

Among the volatile compounds, only 1-propanol discriminated the

saliva of non-omnivore individuals. It is considered to be the result

of the bacterial fermentation of threonine and isoleucine, essential

amino acids present at high levels in several legumes and

vegetables [51,52]. However, because alcohols are primary

volatiles from vegetables, 1-propanol may be directly derived

from the intake of vegetable foods.

The presence of some molecules correlates with salivary
microbiota

The correlation between OTU occurrence and metabolites was

evaluated in this study. However, only few of the correlations

found included molecules that were discriminative of the diets

based on PLS-DA. This was not surprising, given the lack of

correlation between microbiota and dietary habit. Nevertheless, a

map of significant correlations between bacterial OTUs and

metabolites was drawn (Figure 5). 4HPA is a metabolite of the

catabolism of free aromatic amino acids. Prevotella was positively

associated with the occurrence of 4HPA and, consistently, with

tyrosine. 4HPA in saliva is regarded as a signal molecule involved

in the regulation of adhesin expression in Neisseria meningitidis
[53]. The correlations between 4HPA and nine different genera

may indicate a possible role of this molecule in the regulatory

systems of other bacteria in addition to Neisseria. Finally, 1,2,4-

trimethylbenzene and toluene, defined as contaminants of concern

[54,55], showed an almost identical pattern of correlation with

Figure 3. Significant co-occurrence and co-exclusion relationships between bacterial OTUs. Spearman’s rank correlation matrix of OTUs
with . = 0.1% abundance in at least 5 saliva samples. Strong correlations are indicated by large circles, whereas weak correlations are indicated by
small circles. The colors of the scale bar denote the nature of the correlation, with 1 indicating a perfectly positive correlation (dark blue) and 21
indicating a perfectly negative correlation (dark red) between two microbial genera. Only significant correlations (FDR,0.05) are shown.
doi:10.1371/journal.pone.0112373.g003
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several OTUs. Such a negative correlation suggests that there can

be an inhibitory effect of aromatic hydrocarbons on the oral

microbiota.

Conclusions

Saliva provides useful diet-related biomarkers that can discrim-

inate omnivore and non-omnivore dietary habits.

The structure of the salivary microbiota is not influenced by

dietary habits and is instead characterized by a richness in

bacterial taxa and inter-individual similarity, with a large core of

bacterial genera. Based on the available literature, the ‘‘healthy’’

status of individuals appears to have a strong influence on the

structure of oral microbial populations. Microbial homeostasis

could be perturbed in the case of sub-standard oral hygiene or

other unascertained environmental factors, but at present there is

no indication that a choice of omnivore, ovo-lacto-vegetarian or

vegan diet can lead to specific traits in the oral microbiota.

Materials and Methods

A detailed description of the methods is provided as supporting

information (Methods S1).

Recruitment and sample collection
Adult healthy volunteers (n = 161) aged 18–55 (3869.8), with

BMI.18 (2262.3), following a habitual omnivore (total n = 55),

ovo-lacto-vegetarian (total n = 55) or vegan (total n = 51) diet were

recruited at 4 different sites in Italy. The collection centers were in

Bari, Bologna, Parma and Torino. The subjects had been

following an omnivore, ovo-lacto-vegetarian or vegan diet for at

least one year at the time of recruitment. Males constituted 35%,

45% and 45% of the recruited omnivore, ovo-lacto-vegetarian and

vegan volunteers, respectively.

Unstimulated whole saliva was collected into sterile Falcon

tubes (50 mL), as recently described [10]. After the collection of

5 mL of resting saliva (maximum collection time fixed at 30 min)

the samples were stored at 220uC. Saliva samples were collected

on three different days of three consecutive weeks, and the three

samples were pooled before the microbiota and metabolome

analyses.

Microbial diversity analysis
Microbial DNA extraction was carried out using the Biostic

Bacteremia DNA isolation kit (MoBIO Laboratories, Inc.

Carlsbad, CA) with 2 mL of saliva sample. The microbial diversity

was assessed by pyrosequencing of the amplified (520 bp) V1–V3

region of the 16S rRNA gene using a 454 GS Junior platform (454

Figure 4. PLS-DA models based on 1H-NMR and GC-MS/SPME data. Score plots (A) and the corresponding loading plots (B) of PLS-DA
models based on 1H-NMR and GC-MS/SPME data for the saliva from omnivore (black), ovo-lacto-vegetarian (green) and vegan (red) individuals. The
circles identify the molecules with loading values between 0.5 and 1.
doi:10.1371/journal.pone.0112373.g004

Salivary Microbiome and Dietary Habits

PLOS ONE | www.plosone.org 6 November 2014 | Volume 9 | Issue 11 | e112373



Life Sciences, Roche Diagnostics, Italy). Library preparation and

sequencing were carried out as previously described [56].

Raw reads were first filtered according to the 454 processing

pipeline. The sequences were then analyzed and further filtered

using QIIME 1.8.0 software [57]. A quality filter of the sequences

was applied using the split library script by QIIME, as recently

described [58]. OTUs were picked at 99% of similarity and

representative sequences of each cluster were used to assign

taxonomy. Two different databases were used: the Greengenes

[59] and the QIIME formatted version of the Human Oral

Microbiome Database (HOMD) [60]. Alpha and beta diversity

and statistical analyses were carried out in QIIME, as reported

elsewhere [58].

Correlation analysis, sample clustering and statistical analyses

were carried out in R environment (www.r-project.org).

1H nuclear magnetic resonance (NMR) spectroscopy and
gas-chromatography mass spectrometry-solid-phase
microextraction (GC-MS/SPME) analyses

Samples for NMR analysis were prepared according to

Mikkonen et al. [61]. All 1H-NMR spectra were recorded at

300 K using a Bruker US+ Avance III spectrometer operating at

600 MHz (Bruker BioSpin, Karlsruhe, Germany). For this

purpose, the first increment of the nuclear overhauser effect

spectroscopy pulse sequence [62] was employed, with a relaxation

delay of 7 sec and an acquisition time of 2.28 sec. The residual

HDO signal was reduced through presaturation. The spectra were

corrected for errors in chemical shift misalignments using an

interval correlation optimized shifting procedure [63]. Signal

assignment was carried out on the basis of the literature [23] and

using the Amix software (version 2.1.3, Bruker BioSpin). The

spectra were finally averaged over portions of 0.018 ppm.

Figure 5. Significant co-occurrence and co-exclusion relationships between bacterial OTUs and metabolites. Spearman’s rank
correlation matrix of significant relationships between OTUs (at genus level) and metabolites. Strong correlations are indicated by large circles,
whereas weak correlations are indicated by small circles. The colors of the scale bar denote the nature of the correlation, with 1 indicating a perfectly
positive correlation (dark blue) and 21 indicating a perfectly negative correlation (dark red) between microbial genera and metabolites. Only
significant correlations (FDR,0.05) are shown.
doi:10.1371/journal.pone.0112373.g005
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GC-MS/SPME analysis was performed as previously described

[64] and modified as follows. The samples were equilibrated for

10 min at 50uC with stirring. The temperature program was as

follows: 40uC for 1 min and then programmed at 4.5uC rise/min

to 65uC and finally at 10uC rise/min to 230uC, which was

maintained for 17 min. All the GC-MS raw files were converted to

netCDF format via Chemstation (Agilent Technologies) and

subsequently processed with the XCMS toolbox (http://metlin.

scripps.edu/download/). The GC-MS/SPME data were exported

into R for subsequent statistical or multivariate analyses.

Statistical analysis of GC-MS/SPME and 1H-NMR data
To account for possible different natural dilutions of the

samples, both the 1H-NMR spectra and GC-MS/SPME data

were normalized using probabilistic quotient normalization [65].

Molecules with different concentrations in relation to the three

diets were then searched by means of an analysis of variance

(ANOVA), followed by an LSD test (P,0.05). The necessary

calculations were performed using R software.

To discriminate the 1H-NMR or GC-MS/SPME profiles as a

function of diet, models based on projection on latent structures

(PLS) in its discriminant (DA) version [66] were built based on the

normalized concentration of the significant molecules identified.

Twenty-five percent of the samples pertaining to each dietary

group was randomly chosen to be employed as a training set to test

the robustness of the model. The optimal number of latent

variables was calculated on the training set using the leave-10-out

method. The random division of the samples into training and test

sets and the consequent creation of the predictive model were

repeated 100 times, and the parameters of robustness were

averaged. The calculations were performed using the R package

mixOmics (www.r-project.org). Moreover, ANOVA (for discrete

variables) or Spearman’s rank correlation test (for continuous

variables) were carried out in order to define a possible effect of

sex, site of collection, age and BMI on the metabolite concentra-

tion.

Nucleotide sequence accession number
The 16S rRNA gene sequences are available at the Sequence

Read Archive of NCBI (accession number SRP035877).
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(2014) The effect of dietary intervention on paraffin stimulated saliva and dental
health of children participating in a randomized controlled trial. Arch Oral Biol

59: 217–225.
25. Yen CE, Yen CH, Huang MC, Cheng CH, Huang YC (2008) Dietary intake

and nutritional status of vegetarian and omnivorous preschool children and their
parents in Taiwan. Nutr Res 28: 430–436.

26. McEvoy CT, Temple N, Woodside JV (2012) Vegetarian diets, low-meat diets

and health: a review. Public Health Nutr 15: 2287–2294.
27. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, et al. (2013)

Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:
559–563.

28. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, et al. (2010) Bacterial

diversity in the oral cavity of ten healthy individuals. ISME J 4: 962–974.
29. Huse S, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed

through 16S rRNA sequence clusters. PLoS One 7: e34242.
30. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, et al. (2007)

The Human Microbiome Project. Nature 449: 804–810.
31. Faveri M, Mayer MP, Feres M, de Figueiredo LC, Dewhirst FE, et al. (2008)

Microbiological diversity of generalized aggressive periodontitis by 16S rRNA

clonal analysis. Oral Microbiol Immunol 23: 112–118.
32. Takeuchi Y, Umeda M, Sakamoto M, Benno Y, Huang Y, et al. (2001)

Treponema socranskii, Treponema denticola, and Porphyromonas gingivalis are
associated with severity of periodontal tissue destruction. J Periodontol 72:

1354–1363.

33. Yang HW, Asikainen S, Dogan B, Suda R, Lai CH (2004) Relationship of
Actinobacillus actinomycetemcomitans serotype b to aggressive periodontitis:

frequency in pure cultured isolates. J Periodontol 4: 592–599.
34. Sakamoto M, Huang Y, Ohnishi M, Umeda M, Ishikawa I, et al. (2004)

Changes in oral microbial profiles after periodontal treatment as determined by
molecular analysis of 16S rRNA genes. J Med Microbiol 53: 563–571.

35. Eren AM, Borisy GG, Huse SM, Mark Welch JL (2014) Oligotyping analysis of

the human oral microbiome. Proc Natl Acad Sci USA 111: 2875–2884.
36. Tikhonov M, Leach RW, Wingreen NS (2014) Interpreting 16S metagenomic

data without clustering to achieve sub-OTU resolution. ISME J doi:10.1038/
ismej.2014.117.

37. Arumugam M, Raes J, Pelletier R, Le Paslier D, Yamada T, et al. (2011)

Enterotypes of the human gut microbiome. Nature 473: 174–180.
38. Arumugam M, Raes J, Pelletier R, Le Paslier D, Yamada T, et al. (2014)

Addendum: Enterotypes of the human gut microbiome. Nature 506: 516.
39. Takeshita T, Nakano Y, Kumagai T, Yasui M, Kamio N, et al. (2009) The

ecological proportion of indigenous bacterial populations in saliva is correlated
with oral health status. ISME J 3: 65–78.

40. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, et al. (2012)

Microbial co-occurrence relationship in the human microbiome. PLoS Comput
Biol 8: e1002606.

41. Levy R, Borenstein E (2013) Metaboling modeling of species interaction in the
human microbiome elucidates community-level assembly rules. Proc Natl Acad

Sci USA 110: 12804–12809.

42. Bertram HC, Eggers N, Eller N (2009) Potential of human saliva for nuclear
magnetic resonance-based metabolomics and for health-related biomarker

identification. Anal Chem 81: 9188–9193.
43. Soini HA, Klouckova I, Wiesler D, Oberzaucher E, Grammer K, et al. (2010)

Analysis of volatile organic compounds in human saliva by a static sorptive

extraction method and gas chromatography-mass spectrometry. J Chem Ecol
36: 1035–1042.

44. Al-Kateb H, de Lacy Costello B, Ratcliffe N (2013) An investigation of volatile
organic compounds from the saliva of healthy individuals using headspace-trap/

GC-MS. J Breath Res 7: 1–13.

45. de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, et al. (2014) A

review of the volatiles from healthy human body. J Breath Res 8: 014001.
46. Hedrick VE, Dietrich A, Estabrooks PA, Savla J, Serrano E, et al. (2012) Dietary

biomarkers: advances, limitations and future directions. Nutr J 11: 109.

doi:10.1186/1475-2891-11-109.
47. O’Gorman A, Gibbons H, Brennan L (2013) Metabolomics in the identification

of biomarkers of dietary intake. Comp Struct Biol J 4: E201301004.
doi:10.5936/csbj.201301004.

48. Liu YL, Nascimento M, Burne RA (2012) Progress toward understanding the

contribution of alkali generation in dental biofilms to inhibition of dental caries.
Int J Oral Sci 4: 135–140.

49. De Almeida PVD, Gregio AM, Machado MAN, de Lima AAS, Azevedo LR
(2008) Saliva composition and functions: a comprehensive review. J Contemp

Dent Pract 9: 72–80.
50. Laffranchi L, Zotti F, Bonetti S, Dalessandri D, Fontana P (2010) Oral

implications of the vegan diet: observational study. Minerva Stomatol 59: 583–

591.
51. Janssen PH (2004) Propanol as an end product of threonine fermentation. Arch

Microbiol 182: 482–486.
52. Lamsen EN, Atsumi S (2012) Recent progress in synthetic biology for microbial

production of C3–C10 alcohols. Front Microbiol 3: 196. doi:10.3389/

fmicb.2012.00196.
53. Fagnocchi L, Pigozzi E, Scarlato V, Delany I (2012) In the NadR regulon,

adhesins and diverse meningococcal functions are regulated in response to
signals in human saliva. J Bacteriol 194: 460–474.

54. Parisi VA, Brubaker GR, Zenker MJ, Prince RC, Gieg LM, et al. (2009) Field
metabolomics and laboratory assessments of anaerobic intrinsic bioremediation

of hydrocarbons at a petroleum-contaminated site. Microb Biotechnol 2: 202–

212.
55. Kim SJ, Park SJ, Cha IT, Min D, Kim JS, et al. (2014) Metabolic versatility of

toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by
stable isotope probing-based metagenomic analysis. Environ Microbiol 16: 189–

204.

56. Cruciata M, Sannino C, Ercolini D, Scatassa ML, De Filippis F, et al. (2014)
Animal rennets as sources of dairy lactic acid bacteria. Appl Environ Microbiol

80: 2050–2061.
57. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010)

QIIME allows analysis of high-throughput community sequencing data. Nat
Methods 7: 335–336.

58. De Filippis F, La Storia A, Villani F, Ercolini D (2013) Exploring the sources of

bacterial spoilers in beefsteaks by culture-independent high-throughput
sequencing. PLoS One 8: e70222.

59. McDonald D, Price MN, Goodrich J, Nawrocki EP, De Santis TZ, et al. (2012)
An improved Greengenes taxonomy with explicit ranks for ecological and

evolutionary analyses of bacteria and archea. ISME J 6: 610–618.

60. Chen T, Yu WH, Izard J, Baranova OB, Lackshmanan A, et al. (2010) The
Human Oral Microbiome Database: a web accessible resource for investigating

oral microbe taxonomic and genomic information. Database. doi:10.1093/
database/baq013.

61. Mikkonen JJW, Herrala M, Soininen P, Lappalainen R, Tjäderhane L, et al.
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66. Pérez-Enciso M, Tenenhaus M (2003) Prediction of clinical outcome with
microarray data: a partial least squares discriminant analysis (PLS-DA)

approach. Hum Genet 112: 581–592.

Salivary Microbiome and Dietary Habits

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e112373


