160 research outputs found

    Waste to energy in the UK: policy and institutional issues

    Get PDF
    A sustainable waste management policy is necessary to manage the growing stream of municipal solid waste in ecologically sustainable ways. Although landfill has been the dominant form of waste management in the UK there is a need to comply with the European Union landfill directive. Waste to energy (WtE) is a viable waste management option to reduce the reliance on landfills and reap the energy benefits of waste. The first waste-fired power plant was built in the UK in 1885 but several barriers have constrained the use of WtE. This paper assesses the policy and institutional context for the development of WtE in the UK. It discusses how public opinion and choice of technology are important factors in achieving a wider acceptance of WtE in the UK. There is a need to devise coordinated policies on sustainable waste management at the regional and local levels. Furthermore, making all WtE technologies eligible for renewable obligation certificates could support the development of the technology and divert waste from landfills. The absence of efficient heat delivery networks is also a barrier to fulfilling the potential for WtE in the UK

    Effectiveness of waste minimisation projects in reducing water demand by UK industry

    Get PDF
    There is growing interest in managing water demand in the UK. A series of waste minimization clubs have been set up within the country and this paper identifies the effectiveness of these clubs in reducing the demand for water within industry. Membership of these clubs is voluntary and the only incentive for industry to reduce water consumption, and consequently the production of effluent, is the almost immediate financial saving made by the company, often achieved by accounting for the water consumption and loss within site from the point of input from the water supplier to output in the form of effluent. On average, companies are able to reduce water consumption by up to 30 percent. If the entire industrial sector within the UK were to achieve this degree of savings, it is possible that approximately 1300Ml/d could be saved

    Effects of recycled aggregate growth substrate on green roof vegetation development: a six year experiment

    Get PDF
    Green roofs have the potential to address several of the environmental problems associated with urbanisation, and can be used as mitigation for habitats lost at ground level. Brown roofs (a type of green roof) can be used to mitigate for the loss of brownfield habitat, but the best way of designing these habitats remains unclear. This paper reports an experiment to test the effects of different types of recycled aggregate on the development of vegetation assemblages on brown roof mesocosms. Five recycled aggregates were tested: (1) crushed brick, (2) crushed demolition aggregate, (3) solid municipal waste incinerator bottom ash aggregate, (4) a 1:1 mix of 1 and 2, and (5) a 1:1 mix of 3 and 2. Each was seeded with a wildflower mix that also included some Sedum acre and vegetation development was studied over a six-year period. Species richness, assemblage character, number of plants able to seed, and plant biomass were measured. Drought disturbance was the key factor controlling changes in plant assemblage, but effects varied with substrate treatment. All treatments supported a similar plant biomass, but treatments with a high proportion of crushed brick in the growth substrate supported richer assemblages, with more species able to seed, and a smaller amount of Sedum acre. Crushed brick, or recycled aggregates with a high proportion of crushed brick, are recommended as good growth substrate materials for encouraging brown roof plant diversity. This investigation demonstrates the importance of multi-year studies of green roof development for the generation of robust findings

    Towards a comprehensive estimate of national spending on prevention

    Get PDF
    Background Comprehensive information about national spending on prevention is crucial for health policy development and evaluation. This study provides a comprehensive overview of prevention spending in the Netherlands, including those activities beyond the national health accounts. Methods National spending on health-related primary and secondary preventive activities was examined by funding source with the use of national statistics, government reports, sector reports, and data from individual health associations and corporations, public services, occupational health services, and personal prevention. Costs were broken down by diseases, age groups and gender using population-attributable risks and other key variables. Results Total expenditures on prevention were €12.5 billion or €769 per capita in the Netherlands in 2003, of which 20% was included in the national health accounts. 82% was spent on health protection, 16% on disease prevention, and 2% on health promotion activities. Most of the spending was aimed at the prevention of infectious diseases (34%) and acute physical injuries (29%). Per capita spending on prevention increased steeply by age. Conclusion Total expenditure on health-related prevention is much higher than normally reported due to the inclusion of health protection activities beyond the national health accounts. The allocative efficiency of prevention spending, particularly the high costs of health protection and the low costs of health promotion activities, should be addressed with information on their relative cost effectiveness

    Wastewater irrigation: the state of play

    Full text link
    As demand for fresh water intensifies, wastewater is frequently being seen as a valuable resource. Furthermore, wise reuse of wastewater alleviates concerns attendant with its discharge to the environment. Globally, around 20 million ha of land are irrigated with wastewater, and this is likely to increase markedly during the next few decades as water stress intensifies. In 1995, around 2.3 billion people lived in water-stressed river basins and this could increase to 3.5 billion by 2025. We review the current status of wastewater irrigation by providing an overview of the extent of the practice throughout the world and through synthesizing the current understanding of factors influencing sustainable wastewater irrigation. A theme that emerges is that wastewater irrigation is not only more common in water-stressed regions such as the Near East, but the rationale for the practice also tends to differ between the developing and developed worlds. In developing nations, the prime drivers are livelihood dependence and food security, whereas environmental agendas appear to hold greater sway in the developed world. The following were identified as areas requiring greater understanding for the long-term sustainability of wastewater irrigation: (i) accumulation of bioavailable forms of heavy metals in soils, (ii) environmental fate of organics in wastewater-irrigated soils, (iii) influence of reuse schemes on catchment hydrology, including transport of salt loads, (iv) risk models for helminth infections (pertinent to developing nations), (v) microbiological contamination risks for aquifers and surface waters, (vi) transfer efficiencies of chemical contaminants from soil to plants, (vii) health effects of chronic exposure to chemical contaminants, and (viii) strategies for engaging the public.<br /

    Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Get PDF
    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling informed decisions to be made when planning water systems for greenfield developments.J. P. Newman, G. C. Dandy, and H. R. Maie

    Guidance note on the Construction (Design and Management) Regulations 1994

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:q97/14385 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Community wildfire protection plan : Sunriver, Oregon

    Get PDF
    12 pp. Bookmarks supplied by UO. Referenced maps not included. Published March 25, 2005. Captured May 22, 2008.The Sunriver Owners Association (SROA) and the Sunriver Fire Department (SRFD), in consultation with state and federal agencies and other interested parties have collaboratively developed Sunriver’s Community Wildfire Protection Plan (SRCWPP). The SRCWPP was created according to the guidelines of Preparing a Community Wildfire Protection Plan: A Handbook for Wildland-Urban Interface Communities (Communities Committee, Society of American Foresters, National Association of Counties, National Association of State Foresters). [From the Plan

    Solvent consumption in dry-cleaning

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:3791. 725(87) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore