252 research outputs found

    Time-resolved ferromagnetic resonance in epitaxial Fe1-xCox films

    Full text link
    Magnetodynamics in epitaxial Fe1-xCox films on GaAs (100) are studied using time-resolved ferromagnetic resonance, in which the free precession of the magnetization after an impulsive excitation is measured using the polar Kerr effect. The sample is rotated with respect to the static and pulsed field directions, providing a complete mapping of the free energy surface and characteristic relaxation times. The magnetic response can be simulated with a simple coherent rotation model except in the immediate vicinity of switching fields. Bulk and surface anisotropies are identified, and unusual dynamics associated with the coexistence of cubic and uniaxial anisotropies are observed.Comment: PDF - 4 figure

    Pc1-Pc2 waves and energetic particle precipitation during and after magnetic storms: superposed epoch analysis and case studies

    Get PDF
    Magnetic pulsations in the Pc1-Pc2 frequency range (0.1-5 Hz) are often observed on the ground and in the Earth's magnetosphere during the aftermath of geomagnetic storms. Numerous studies have suggested that they may play a role in reducing the fluxes of energetic ions in the ring current; more recent studies suggest they may interact parasitically with radiation belt electrons as well. We report here on observations during 2005 from search coil magnetometers and riometers installed at three Antarctic stations, Halley (-61.84 degrees magnetic latitude, MLAT), South Pole (-74.18 degrees MLAT), and McMurdo (-79.96 degrees MLAT), and from energetic ion detectors on the NOAA Polar-orbiting Operational Environment Satellites (POES). A superposed epoch analysis based on 13 magnetic storms between April and September 2005 as well as case studies confirm several earlier studies that show that narrowband Pc1-Pc2 waves are rarely if ever observed on the ground during the main and early recovery phases of magnetic storms. However, intense broadband Pi1-Pi2 ULF noise, accompanied by strong riometer absorption signatures, does occur during these times. As storm recovery progresses, the occurrence of Pc1-Pc2 waves increases, at first in the daytime and especially afternoon sectors but at essentially all local times later in the recovery phase (typically by days 3 or 4). During the early storm recovery phase the propagation of Pc1-Pc2 waves through the ionospheric waveguide to higher latitudes was more severely attenuated. These observations are consistent with suggestions that Pc1-Pc2 waves occurring during the early recovery phase of magnetic storms are generated in association with plasmaspheric plumes in the noon-to-dusk sector, and these observations provide additional evidence that the propagation of waves to ground stations is inhibited during the early phases of such storms. Analysis of 30- to 250-keV proton data from four POES satellites during the 24-27 August and 18-19 July 2005 storm intervals showed that the location of the inner edge of the ring current matched well with the plasmapause model of O'Brien and Moldwin (2003). However, the POES data showed no evidence of the consequences of electromagnetic ion cyclotron waves (localized proton precipitation) during main and early recovery phase. During later stages of the recovery phase, when such precipitation was observed, it was coincident with intense wave events at Halley, and it occurred at L shells near or up to 1 RE outside the modeled plasmapause but well equatorward of the isotropy boundary

    Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 h in magnetic local time

    Get PDF
    Although most studies of the effects of EMIC waves on Earth's outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on February 23, 2014 that extended over 8 hours in UT and over 12 hours in local time, stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) appeared for over 4 hours at both Van Allen Probes, from late morning through local noon, when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. Waves were also observed by ground-based induction magnetometers in Antarctica (near dawn), Finland (near local noon), Russia (in the afternoon), and in Canada (from dusk to midnight). Ten passes of NOAA-POES and METOP satellites near the northern footpoint of the Van Allen Probes observed 30-80 keV subauroral proton precipitation, often over extended L shell ranges; other passes identified a narrow L-shell region of precipitation over Canada. Observations of relativistic electrons by the Van Allen Probes showed that the fluxes of more field-aligned and more energetic radiation belt electrons were reduced in response to both the emission over Canada and the more spatially extended emission associated with the compression, confirming the effectiveness of EMIC-induced loss processes for this event

    Imaging of Spin Dynamics in Closure Domain and Vortex Structures

    Full text link
    Time-resolved Kerr microscopy is used to study the excitations of individual micron- scale ferromagnetic thin film elements in their remnant state. Thin (18 nm) square elements with edge dimensions between 1 and 10 μ\mum form closure domain structures with 90 degree Neel walls between domains. We identify two classes of excitations in these systems. The first corresponds to precession of the magnetization about the local demagnetizing field in each quadrant, while the second excitation is localized in the domain walls. Two modes are also identified in ferromagnetic disks with thicknesses of 60 nm and diameters from 2 μ\mum down to 500 nm. The equilibrium state of each disk is a vortex with a singularity at the center. As in the squares, the higher frequency mode is due to precession about the internal field, but in this case the lower frequency mode corresponds to gyrotropic motion of the entire vortex. These results demonstrate clearly the existence of well-defined excitations in inhomogeneously magnetized microstructures.Comment: PDF File (Figures at reduced resolution

    Сучасний стан і проблеми управління залізничним транспортом України

    Get PDF
    Проаналізовано стан і тенденції розвитку залізничного транспорту. Розглянуті основні завдання державного регулювання галузі.Проанализировано состояние и тенденции развития железнодорожного транспорта. Рассмотренны основные задания государственного регулирования отрасли.The condition and trends of railway transport has been anilized. The main tasks of state regulation of railway transport has been considereted

    Global observations of magnetospheric high‐m poloidal waves during the 22 June 2015 magnetic storm

    Get PDF
    We report global observations of high‐m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single‐frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step‐like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE, suggesting that there exist a discrete number of drift‐bounce resonance regions across L shells during storm times.Key PointsObserved long‐lasting high‐m poloidal waves associated with second harmonics of field line resonances during a major magnetic stormDemonstrated global spatial extent of storm time poloidal FLR region using observations from a constellation of widely spaced satellitesRevealed discrete spatial structures of resonant L shells with step‐like frequency changesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137558/1/grl55775_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137558/2/grl55775.pd

    Equatorial electron loss by double resonance with oblique and parallel intense chorus waves

    Get PDF
    International audiencePuzzling satellite observations of butterfly pitch angle distributions and rapid dropouts of 30–150 keV electrons are widespread in the Earth’s radiation belts. Several mechanisms have been proposed to explain these observations, such as enhanced outward radial diffusion combined withmagnetopause shadowing or scattering by intense magnetosonic waves, but their effectiveness is mainly limited to storm times. Moreover, the scattering of 30–150 keV electrons via cyclotron resonance with intense parallel chorus waves should be limited to particles with equatorial pitch angle smaller than 70∘–75∘, leaving unaffected a large portion of the population. In this paper, we investigate the possible effects of oblique whistler mode waves, noting, in particular, that Landau resonance with very oblique waves can occur up to ∼89∘. We demonstrate that such very oblique chorus waves with realistic amplitudes can very efficiently nonlinearly transport nearly equatorially mirroring electrons toward smaller pitch angleswhere nonlinear scattering (phase bunching) via cyclotron resonance with quasi-parallel waves can take over and quickly send them to much lower pitch angles <40∘. The proposed double resonance mechanism could therefore explain the formation of butterfly pitch angle distributions as well as contribute to some fast dropouts of 30–150 keV electrons occurring during moderate geomagnetic disturbances at L = 4–6. Since 30–150 keV electrons represent a seed population for a further acceleration to relativistic energies by intense parallel chorus waves during storms or substorms, the proposed mechanism may have important consequences on the dynamics of 100 keV to MeV electron fluxes in the radiation belts
    corecore