36 research outputs found

    The Effect of Input DNA Copy Number on Genotype Call and Characterising SNP Markers in the Humpback Whale Genome Using a Nanofluidic Array

    Get PDF
    Recent advances in nanofluidic technologies have enabled the use of Integrated Fluidic Circuits (IFCs) for high-throughput Single Nucleotide Polymorphism (SNP) genotyping (GT). In this study, we implemented and validated a relatively low cost nanofluidic system for SNP-GT with and without Specific Target Amplification (STA). As proof of principle, we first validated the effect of input DNA copy number on genotype call rate using well characterised, digital PCR (dPCR) quantified human genomic DNA samples and then implemented the validated method to genotype 45 SNPs in the humpback whale, Megaptera novaeangliae, nuclear genome. When STA was not incorporated, for a homozygous human DNA sample, reaction chambers containing, on average 9 to 97 copies, showed 100% call rate and accuracy. Below 9 copies, the call rate decreased, and at one copy it was 40%. For a heterozygous human DNA sample, the call rate decreased from 100% to 21% when predicted copies per reaction chamber decreased from 38 copies to one copy. The tightness of genotype clusters on a scatter plot also decreased. In contrast, when the same samples were subjected to STA prior to genotyping a call rate and a call accuracy of 100% were achieved. Our results demonstrate that low input DNA copy number affects the quality of data generated, in particular for a heterozygous sample. Similar to human genomic DNA, a call rate and a call accuracy of 100% was achieved with whale genomic DNA samples following multiplex STA using either 15 or 45 SNP-GT assays. These calls were 100% concordant with their true genotypes determined by an independent method, suggesting that the nanofluidic system is a reliable platform for executing call rates with high accuracy and concordance in genomic sequences derived from biological tissue

    Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification

    Get PDF
    ABSTRACT: Droplet digital polymerase chain reaction (ddPCR) is a new technology that was recently commercialized to enable the precise quantification of target nucleic acids in a sample. ddPCR measures absolute quantities by counting nucleic acid molecules encapsulated in discrete, volumetrically defined, water-in-oil droplet partitions. This novel ddPCR format offers a simple workflow capable of generating highly stable partitioning of DNA molecules. In this study, we assessed key performance parameters of the ddPCR system. A linear ddPCR response to DNA concentration was obtained from 0.16 % through to 99.6 % saturation in a 20,000 droplet assay corresponding to more than 4 orders of magnitude of target DNA copy number per ddPCR. Analysis of simplex and duplex assays targeting two distinct loci in the Lambda DNA genome using the ddPCR platform agreed, within their expanded uncertainties, with values obtained using a lower density microfluidic chamber based digital PCR (cdPCR). A relative expanded uncertainty under 5 % was achieved for copy number concentration using ddPCR. This level of uncertainty is much lower than values typically observed for quantification of specific DNA target sequences using currently commercially available real-time and digital cdPCR technologies

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Review of Technologies for Detecting Genetically Modified Materials in Commodities and Food

    No full text
    The last decade has seen the development and commercialisation of an increasing number of genetically modified (GM) crops. Whilst only two GM crops, cotton and carnation, are approved for commercial production in Australia, almost twenty different GM crops have been approved for import as food. This is less than half of the total number of GM crops grown worldwide, though each country has its own list of approved GM crops. Labelling legislation and trade requirements differ from one country to another, leading to the rapid development, internationally, of numerous tests to detect GM material. However, GM samples vary from raw commodities to highly processed foods and testing requirements extend from a general GM screen to a method capable of identifying and quantifying a specific GM crop. The method that is most suited for each foodstuff must be determined on a case-by-case basis. This review responds to an urgent need to provide an understanding of the complexities of GM testing to relevant Australian industry and government bodies. Progress towards international harmonisation of test results and development of the necessary infrastructure in this area of biomeasurement is presented. This document will assist commercial and regulatory decision-making, to meet domestic and international market requirements for commodities and processed foods

    Addressing the issue of accurate measurement within biological systems

    No full text
    Research in the fields of life sciences and biotechnology has expanded rapidly in the last decade and new technologies are constantly being explored. As a number of these technologies make the transition into the routine laboratory, there is a significant challenge associated with the accuracy of biology-based measurement. This need for accuracy can be clearly demonstrated in the field of nucleic acid testing

    BIOTECHNOLOGY RESEARCH - ADDRESSING THE ISSUE OF ACCURATE MEASUREMENT WITHIN BIOLOGICAL SYSTEMS

    No full text
    Research in the fields of life sciences and biotechnology has expanded rapidly in the last decade and new technologies are constantly being explored. As a number of these technologies make the transition into the routine laboratory, there is a significant challenge associated with the accuracy of biology-based measurement. This need for accuracy can be clearly demonstrated in the field of nucleic acid testing

    Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction

    No full text
    Abstract Quantitative analysis of genetically modified (GM) foods requires estimation of the amount of the transgenic event relative to an endogenous gene. Regulatory authorities in the European Union (EU) have defined the labelling threshold for GM food on the copy number ratio between the transgenic event and an endogenous gene. Real-time polymerase chain reaction (PCR) is currently being used for quantification of GM organisms (GMOs). Limitations in realtime PCR applications to detect very low number of DNA targets has led to new developments such as the digital PCR (dPCR) which allows accurate measurement of DNA copies without the need for a reference calibrator. In this paper, the amount of maize MON810 and hmg copies present in a DNA extract from seed powders certified for their mass content and for their copy number ratio was measured by dPCR. The ratio of these absolute copy numbers determined by dPCR was found to be identical to the ratios measured by real-time quantitative PCR (qPCR) using a plasmid DNA calibrator. These results indicate that both methods could be applied to determine the copy number ratio in MON810. The reported values were in agreement with estimations from a model elaborated to convert mass fractions into copy number fractions in MON810 varieties. This model was challenged on two MON810 varieties used for the production of MON810 certified reference materials (CRMs) which differ in the parental origin of the introduced GM trait. We conclude that dPCR has a high metrological quality and can be used for certifying GM CRMs in terms of DNA copy number ratio

    Storage Stability of Solutions of DNA Standards

    No full text

    Estimated DNA copy number in the reaction chamber with (simplex or multiplex) and without STA using whale genomic DNA.

    No full text
    <p> <i>The DNA copy number in the reaction chamber (E<sub>RC</sub>) was estimated using equations (1–6) derived in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039181#pone-0039181-t001" target="_blank">Table 1</a>.</i></p>*<p> <i>The copies/reaction chamber post-simplex and multiplex STA PCR is an estimate obtained when using 15 SNP-GT assays with a 5 –fold dilution post STA.</i></p
    corecore