54 research outputs found

    Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes, and between sex chromosomes and autosomes. In many organisms, dosage compensation has thus evolved to equalize sex-linked gene expression in males and females. In mammals this is achieved by X chromosome inactivation and in flies and worms by up- or down-regulation of X-linked expression, respectively. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma.</p> <p>Results</p> <p>Here, we use a microarray approach to show that male chicken embryos generally express higher levels of Z-linked genes than female birds, both in soma and in gonads. The distribution of male-to-female fold-change values for Z chromosome genes is wide and has a mean of 1.4–1.6, which is consistent with absence of dosage compensation and sex-specific feedback regulation of gene expression at individual loci. Intriguingly, without global dosage compensation, the female chicken has significantly lower expression levels of Z-linked compared to autosomal genes, which is not the case in male birds.</p> <p>Conclusion</p> <p>The pronounced sex difference in gene expression is likely to contribute to sexual dimorphism among birds, and potentially has implication to avian sex determination. Importantly, this report, together with a recent study of sex-biased expression in somatic tissue of chicken, demonstrates the first example of an organism with a lack of global dosage compensation, providing an unexpected case of a viable system with large-scale imbalance in gene expression between sexes.</p

    p27 Deficiency Cooperates with Bcl-2 but Not Bax to Promote T-Cell Lymphoma

    Get PDF
    The effect of Bcl-2 on oncogenesis is complex and expression may either delay or accelerate oncogenesis. The pro-oncogenic activity is attributed to its well characterized anti-apoptotic function while the anti-oncogenic function has been attributed to its inhibition of cellular proliferation. Recent studies demonstrate that p27 may mediate the effects of Bcl-2 on cellular proliferation. We hypothesized that p27 may suppress tumor formation by Bcl-2 family members. To test this hypothesis, cell cycle inhibition and lymphoma development were examined in Lck-Bcl-2 and Lck-Bax38/1 transgenic mice deficient in p27. Strikingly, p27 deficiency synergistically cooperates with Bcl-2 to increase T cell hyperplasia and development of spontaneous T cell lymphomas. Within 1 year, >90% of these mice had developed thymic T cell lymphomas. This high penetrance contrasts with a one year incidence of <5% of thymic lymphoma in Lck-Bcl-2 or p27 −/− mice alone. In contrast, p27 deficiency had no effect on tumor formation in Lck-Bax38/1 transgenic mice, another model of T cell lymphoma. Histologically the lymphomas in p27 −/− Lck-Bcl-2 mice are lymphoblastic and frequently involve multiple organs suggesting an aggressive phenotype. Interestingly, in mature splenic T cells, Bcl-2 largely retains its anti-proliferative function even in the absence of p27. T cells from p27 −/− Lck-Bcl-2 mice show delayed kinetics of CDK2 Thr-160 phosphorylation. This delay is associated with a delay in the up regulation of both Cyclin D2 and D3. These data demonstrate a complex relationship between the Bcl-2 family, cellular proliferation, and oncogenesis and demonstrate that p27 up-regulation is not singularly important in the proliferative delay observed in T cells expressing Bcl-2 family members. Nonetheless, the results indicate that p27 is a critical tumor suppressor in the context of Bcl-2 expression

    Comparative Genomic Hybridization (CGH) Reveals a Neo-X Chromosome and Biased Gene Movement in Stalk-Eyed Flies (Genus Teleopsis)

    Get PDF
    Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information

    Tempo and Mode in Evolution of Transcriptional Regulation

    Get PDF
    Perennial questions of evolutionary biology can be applied to gene regulatory systems using the abundance of experimental data addressing gene regulation in a comparative context. What is the tempo (frequency, rate) and mode (way, mechanism) of transcriptional regulatory evolution? Here we synthesize the results of 230 experiments performed on insects and nematodes in which regulatory DNA from one species was used to drive gene expression in another species. General principles of regulatory evolution emerge. Gene regulatory evolution is widespread and accumulates with genetic divergence in both insects and nematodes. Divergence in cis is more common than divergence in trans. Coevolution between cis and trans shows a particular increase over greater evolutionary timespans, especially in sex-specific gene regulation. Despite these generalities, the evolution of gene regulation is gene- and taxon-specific. The congruence of these conclusions with evidence from other types of experiments suggests that general principles are discoverable, and a unified view of the tempo and mode of regulatory evolution may be achievable

    Core commitments for field trials of gene drive organisms

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this record Gene drive organisms (GDOs), whose genomes have been genetically engineered to spread a desired allele through a population, have the potential to transform the way societies address a wide range of daunting public health and environmental challenges. The development, testing, and release of GDOs, however, are complex and often controversial. A key challenge is to clarify the appropriate roles of developers and others actively engaged in work with GDOs in decision-making processes, and, in particular, how to establish partnerships with relevant authorities and other stakeholders. Several members of the gene drive community previously proposed safeguards for laboratory experiments with GDOs (1) that, in the absence of national or international guidelines, were considered essential for responsible laboratory work to proceed. Now, with GDO development advancing in laboratories (2–5), we envision similar safeguards for the potential next step: ecologically and/or genetically confined field trials to further assess the performance of GDOs. A GDO's propensity to spread necessitates well-developed criteria for field trials to assess its potential impacts (6). We, as a multidisciplinary group of GDO developers, ecologists, conservation biologists, and experts in social science, ethics, and policy, outline commitments below that we deem critical for responsible conduct of a field trial and to ensure that these technologies, if they are introduced, serve the public interest.British AcademyBritish Academ

    Geolocation with respect to persona privacy for the Allergy Diary app - a MASK study

    Get PDF
    Background: Collecting data on the localization of users is a key issue for the MASK (Mobile Airways Sentinel network: the Allergy Diary) App. Data anonymization is a method of sanitization for privacy. The European Commission's Article 29 Working Party stated that geolocation information is personal data. To assess geolocation using the MASK method and to compare two anonymization methods in the MASK database to find an optimal privacy method. Methods: Geolocation was studied for all people who used the Allergy Diary App from December 2015 to November 2017 and who reported medical outcomes. Two different anonymization methods have been evaluated: Noise addition (randomization) and k-anonymity (generalization). Results: Ninety-three thousand one hundred and sixteen days of VAS were collected from 8535 users and 54,500 (58. 5%) were geolocalized, corresponding to 5428 users. Noise addition was found to be less accurate than k-anonymity using MASK data to protect the users' life privacy. Discussion: k-anonymity is an acceptable method for the anonymization of MASK data and results can be used for other databases.Peer reviewe
    corecore