35 research outputs found

    Impact of deep learning-determined smoking status on mortality of cancer patients: never too late to quit

    Get PDF
    BackgroundPersistent smoking after cancer diagnosis is associated with increased overall mortality (OM) and cancer mortality (CM). According to the 2020 Surgeon General's report, smoking cessation may reduce CM but supporting evidence is not wide. Use of deep learning-based modeling that enables universal natural language processing of medical narratives to acquire population-based real-life smoking data may help overcome the challenge. We assessed the effect of smoking status and within-1-year smoking cessation on CM by an in-house adapted freely available language processing algorithm.Materials and methodsThis cross-sectional real-world study included 29 823 patients diagnosed with cancer in 2009-2018 in Southwest Finland. The medical narrative, International Classification of Diseases-10th edition codes, histology, cancer treatment records, and death certificates were combined. Over 162 000 sentences describing tobacco smoking behavior were analyzed with ULMFiT and BERT algorithms.ResultsThe language model classified the smoking status of 23 031 patients. Recent quitters had reduced CM [hazard ratio (HR) 0.80 (0.74-0.87)] and OM [HR 0.78 (0.72-0.84)] compared to persistent smokers. Compared to never smokers, persistent smokers had increased CM in head and neck, gastro-esophageal, pancreatic, lung, prostate, and breast cancer and Hodgkin's lymphoma, irrespective of age, comorbidities, performance status, or presence of metastatic disease. Increased CM was also observed in smokers with colorectal cancer, men with melanoma or bladder cancer, and lymphoid and myeloid leukemia, but no longer independently of the abovementioned covariates. Specificity and sensitivity were 96%/96%, 98%/68%, and 88%/99% for never, former, and current smokers, respectively, being essentially the same with both models.ConclusionsDeep learning can be used to classify large amounts of smoking data from the medical narrative with good accuracy. The results highlight the detrimental effects of persistent smoking in oncologic patients and emphasize that smoking cessation should always be an essential element of patient counseling.</p

    Individuals responses to economic cycles: Organizational relevance and a multilevel theoretical integration

    Get PDF

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Global transcript profiles of fat in monozygotic twins discordant for BMI:Pathways behind acquired obesity

    Get PDF
    BackgroundThe acquired component of complex traits is difficult to dissect in humans. Obesity represents such a trait, in which the metabolic and molecular consequences emerge from complex interactions of genes and environment. With the substantial morbidity associated with obesity, a deeper understanding of the concurrent metabolic changes is of considerable importance. The goal of this study was to investigate this important acquired component and expose obesity-induced changes in biological pathways in an identical genetic background.Methods and FindingsWe used a special study design of “clonal controls,” rare monozygotic twins discordant for obesity identified through a national registry of 2,453 young, healthy twin pairs. A total of 14 pairs were studied (eight male, six female; white), with a mean ± standard deviation (SD) age 25.8 ± 1.4 y and a body mass index (BMI) difference 5.2 ± 1.8 kg/m2. Sequence analyses of mitochondrial DNA (mtDNA) in subcutaneous fat and peripheral leukocytes revealed no aberrant heteroplasmy between the co-twins. However, mtDNA copy number was reduced by 47% in the obese co-twin's fat. In addition, novel pathway analyses of the adipose tissue transcription profiles exposed significant down-regulation of mitochondrial branched-chain amino acid (BCAA) catabolism (p &lt; 0.0001). In line with this finding, serum levels of insulin secretion-enhancing BCAAs were increased in obese male co-twins (9% increase, p = 0.025). Lending clinical relevance to the findings, in both sexes the observed aberrations in mitochondrial amino acid metabolism pathways in fat correlated closely with liver fat accumulation, insulin resistance, and hyperinsulinemia, early aberrations of acquired obesity in these healthy young adults.ConclusionsOur findings emphasize a substantial role of mitochondrial energy- and amino acid metabolism in obesity and development of insulin resistance.</p

    Impact of deep learning-determined smoking status on mortality of cancer patients : never too late to quit

    Get PDF
    BACKGROUND: Persistent smoking after cancer diagnosis is associated with increased overall mortality (OM) and cancer mortality (CM). According to the 2020 Surgeon General's report, smoking cessation may reduce CM but supporting evidence is not wide. Use of deep learning-based modeling that enables universal natural language processing of medical narratives to acquire population-based real-life smoking data may help overcome the challenge. We assessed the effect of smoking status and within-1-year smoking cessation on CM by an in-house adapted freely available language processing algorithm. MATERIALS AND METHODS: This cross-sectional real-world study included 29 823 patients diagnosed with cancer in 2009-2018 in Southwest Finland. The medical narrative, International Classification of Diseases-10th edition codes, histology, cancer treatment records, and death certificates were combined. Over 162 000 sentences describing tobacco smoking behavior were analyzed with ULMFiT and BERT algorithms. RESULTS: The language model classified the smoking status of 23 031 patients. Recent quitters had reduced CM [hazard ratio (HR) 0.80 (0.74-0.87)] and OM [HR 0.78 (0.72-0.84)] compared to persistent smokers. Compared to never smokers, persistent smokers had increased CM in head and neck, gastro-esophageal, pancreatic, lung, prostate, and breast cancer and Hodgkin's lymphoma, irrespective of age, comorbidities, performance status, or presence of metastatic disease. Increased CM was also observed in smokers with colorectal cancer, men with melanoma or bladder cancer, and lymphoid and myeloid leukemia, but no longer independently of the abovementioned covariates. Specificity and sensitivity were 96%/96%, 98%/68%, and 88%/99% for never, former, and current smokers, respectively, being essentially the same with both models. CONCLUSIONS: Deep learning can be used to classify large amounts of smoking data from the medical narrative with good accuracy. The results highlight the detrimental effects of persistent smoking in oncologic patients and emphasize that smoking cessation should always be an essential element of patient counseling.publishedVersionPeer reviewe
    corecore