27 research outputs found

    Serum Angiopoietin-1 and -2 Levels Discriminate Cerebral Malaria from Uncomplicated Malaria and Predict Clinical Outcome in African Children

    Get PDF
    BACKGROUND: Limited tools exist to identify which individuals infected with Plasmodium falciparum are at risk of developing serious complications such as cerebral malaria (CM). The objective of this study was to assess serum biomarkers that differentiate between CM and non-CM, with the long-term goal of developing a clinically informative prognostic test for severe malaria. METHODOLOGY/PRINCIPAL FINDINGS: Based on the hypothesis that endothelial activation and blood-brain-barrier dysfunction contribute to CM pathogenesis, we examined the endothelial regulators, angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2), in serum samples from P. falciparum-infected patients with uncomplicated malaria (UM) or CM, from two diverse populations--Thai adults and Ugandan children. Angiopoietin levels were compared to tumour necrosis factor (TNF). In both populations, ANG-1 levels were significantly decreased and ANG-2 levels were significantly increased in CM versus UM and healthy controls (p<0.001). TNF was significantly elevated in CM in the Thai adult population (p<0.001), but did not discriminate well between CM and UM in African children. Receiver operating characteristic curve analysis showed that ANG-1 and the ratio of ANG-2:ANG-1 accurately discriminated CM patients from UM in both populations. Applied as a diagnostic test, ANG-1 had a sensitivity and specificity of 100% for distinguishing CM from UM in Thai adults and 70% and 75%, respectively, for Ugandan children. Across both populations the likelihood ratio of CM given a positive test (ANG-1<15 ng/mL) was 4.1 (2.7-6.5) and the likelihood ratio of CM given a negative test was 0.29 (0.20-0.42). Moreover, low ANG-1 levels at presentation predicted subsequent mortality in children with CM (p = 0.027). CONCLUSIONS/SIGNIFICANCE: ANG-1 and the ANG-2/1 ratio are promising clinically informative biomarkers for CM. Additional studies should address their utility as prognostic biomarkers and potential therapeutic targets in severe malaria

    Tropical limestone forest resilience during MIS-2: implications for Pleistocene foraging & modern conservation

    Get PDF
    In this paper we present a multi-proxy study of tropical limestone forest and its utilization by human groups during the major climatic and environmental upheavals of MIS-2 (29-11.7 ka BP). Our data are drawn from new field research within the Tràng An World Heritage property, on the edge of the Red River Delta, northern Vietnam. Key findings from this study include 1) that limestone forest formations were resilient to the large-scale landscape transformation and inundation of the Sunda continent at the end of the last glaciation; 2) that prehistoric human groups were probably present in this habitat through-out MIS-2; and 3) that the forested, almost insular, karst of Tràng An provided foragers with a stable resource-base in a wider changing landscape. These results have implications for our understanding of the prehistoric utilization of karst environments and resonance for conservation efforts in the face of climate and environmental change today

    Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets

    Get PDF
    Human-mediated biological exchange has had global social and ecological impacts. In subS-aharan Africa, several domestic and commensal animals were introduced from Asia in the pre-modern period; however, the timing and nature of these introductions remain contentious. One model supports introduction to the eastern African coast after the mid-first millennium CE, while another posits introduction dating back to 3000 BCE. These distinct scenarios have implications for understanding the emergence of long-distance maritime connectivity, and the ecological and economic impacts of introduced species. Resolution of this longstanding debate requires new efforts, given the lack of well-dated fauna from high-precision excavations, and ambiguous osteomorphological identifications. We analysed faunal remains from 22 eastern African sites spanning a wide geographic and chronological range, and applied biomolecular techniques to confirm identifications of two Asian taxa: domestic chicken (Gallus gallus) and black rat (Rattus rattus). Our approach included ancient DNA (aDNA) analysis aided by BLAST-based bioinformatics, Zooarchaeology by Mass Spectrometry (ZooMS) collagen fingerprinting, and direct AMS (accelerator mass spectrometry) radiocarbon dating. Our results support a late, mid-first millennium CE introduction of these species. We discuss the implications of our findings for models of biological exchange, and emphasize the applicability of our approach to tropical areas with poor bone preservation

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore