25 research outputs found

    Pharmacologic Inhibition of the TGF-ÎČ Type I Receptor Kinase Has Anabolic and Anti-Catabolic Effects on Bone

    Get PDF
    During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-ÎČ has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-ÎČ signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-ÎČ signaling on bone remain unclear. To examine the role of TGF-ÎČ in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-ÎČ type I receptor (TÎČRI) kinase on bone mass, architecture and material properties. Inhibition of TÎČRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TÎČRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TÎČRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TÎČRI inhibitors may be effective in treating conditions of skeletal fragility

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Construction of a Realistic, Whole-Body, Three-Dimensional Equine Skeletal Model using Computed Tomography Data

    No full text
    Therapies based upon whole-body biomechanical assessments are successful for injury prevention and rehabilitation in human athletes. Similar approaches have rarely been used to study equine athletic injury. Degenerative osteoarthritis caused by mechanical stress can originate from chronic postural dysfunction, which, because the primary dysfunction is often distant from the site of tissue injury, is best identified through modeling whole-body biomechanics. To characterize whole-body equine kinematics, a realistic skeletal model of a horse was created from equine computed tomography (CT) data that can be used for functional anatomical and biomechanical modeling. Equine CT data were reconstructed into individual three-dimensional (3D) data sets (i.e., bones) using 3D visualization software and assembled into a complete 3D skeletal model. The model was then rigged and animated using 3D animation and modeling software. The resulting 3D skeletal model can be used to characterize equine postures associated with degenerative tissue changes as well as to identify postures that reduce mechanical stress at the sites of tissue injury. In addition, when animated into 4D, the model can be used to demonstrate unhealthy and healthy skeletal movements and can be used to develop preventative and rehabilitative individualized therapies for horses with degenerative lamenesses. Although the model will soon be available for download, it is currently in a format that requires access to the 3D animation and modeling software, which has quite a learning curve for new users. This protocol will guide users in (1) developing such a model for any organism of interest and (2) using this specific equine model for their own research questions
    corecore