17 research outputs found

    Clastic Polygonal Networks Around Lyot Crater, Mars: Possible Formation Mechanisms From Morphometric Analysis

    Get PDF
    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (> 100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater

    Complex geomorphologic assemblage of terrains in association with the banded terrain in Hellas basin, Mars

    Get PDF
    Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called “banded terrain”, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas

    CO2-driven surface changes in the Hapi region on Comet 67P/Churyumov-Gerasimenko

    Get PDF
    Between 2014 December 31 and 2015 March 17, the OSIRIS cameras on Rosetta documented the growth of a 140 m wide and 0.5 m deep depression in the Hapi region on Comet 67P/Churyumov-Gerasimenko. This shallow pit is one of several that later formed elsewhere on the comet, all in smooth terrain that primarily is the result of airfall of coma particles. We have compiled observations of this region in Hapi by the microwave instrument MIRO on Rosetta, acquired during October and November 2014. We use thermophysical and radiative transfer models in order to reproduce the MIRO observations. This allows us to place constraints on the thermal inertia, diffusivity, chemical composition, stratification, extinction coefficients, and scattering properties of the surface material, and how they evolved during the months prior to pit formation. The results are placed in context through long-term comet nucleus evolution modelling. We propose that: 1) MIRO observes signatures that are consistent with a solid-state greenhouse effect in airfall material; 2) CO2 ice is sufficiently close to the surface to have a measurable effect on MIRO antenna temperatures, and likely is responsible for the pit formation in Hapi observed by OSIRIS; 3) the pressure at the CO2 sublimation front is sufficiently strong to expel dust and water ice outwards, and to compress comet material inwards, thereby causing the near-surface compaction observed by CONSERT, SESAME, and groundbased radar, manifested as the 'consolidated terrain' texture observed by OSIRIS

    The geology and geophysics of Kuiper Belt object (486958) Arrokoth

    Get PDF
    The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, are primitive objects preserving information about Solar System formation. The New Horizons spacecraft flew past one of these objects, the 36 km long contact binary (486958) Arrokoth (2014 MU69), in January 2019. Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters diameter) within a radius of 8000 km, and has a lightly-cratered smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism

    Shallow subsurface basalt layer along Cerberus Fossae, Mars: Insights from SHARAD, HiRISE, and CRISM analysis

    No full text
    International audienceWe surveyed the subsurface structure along Cerberus Fossae using data from SHAllow RADar (SHARAD), High-Resolution Imaging Science Experiment (HiRISE), and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO). The subsurface structure along the Cerberus Fossae is fundamental to understanding the depositional history of the region. We identified meter-scale stratigraphy using HiRISE images and digital terrain models (DTMs) and found three distinct vertical units 1) ~3 to 5 m thick regolith cover, 2) ~30 m thickly layered unit, and 3) ~260 m thick massive unit dominated by boulders. Using SHARAD radargrams, we identified a subsurface reflector at the interface between units 2 and 3, located ~34 m deep. Our analysis suggests a real dielectric permittivity of 9.34 ± 1.01 (1σ), and a mean loss tangent of 0.027 ± 0.01 for the shallow subsurface material, thus indicating thick, dense shergottite-type basaltic material along the Cerberus Fossae. Using the dielectric permittivity mixing law, we found that the porosity of the shergottite-type basalt is less than 4%. CRISM analysis aids in further constraining the nature of the shergottite-type basalt and suggests the presence of Fe-rich olivine along the Cerberus Fossae, thus, referred as olivine-bearing shergottite-type basalt in this study. We derived the age of subsurface material using the crater size-frequency distribution and estimated the crater retention age of ~4 Ma. Overall, this study suggests a ~30 m thick dense and layered olivine-bearing shergottite-type basalt along the Cerberus Fossae, which is older than 4 Ma. The results of this study are incompatible with the hypothesis of a sea of frozen water in the shallow subsurface (up to 35 m) along the Cerberus Fossae

    Cometary surface dust layers built out of millimetre-scale aggregates: dependence of modelled cometary gas production on the layer transport properties

    No full text
    The standard approach to obtaining knowledge about the properties of the surface layer of a comet from observations of gas production consists of two stages. First, various thermophysical models are used to calculate gas production for a few sets of parameters. Second, a comparison of observations and theoretical predictions is performed. This approach is complicated because the values of many model characteristics are known only approximately. Therefore, it is necessary to investigate the sensitivity of the simulated outgassing to variations in the properties of the surface layer. This problem was recently considered by us for aggregates up to tens of microns in size. For millimetre-size aggregates, a qualitative extension of the method used to model the structural characteristics of the layer is required. It is also necessary to study the role of radiative thermal conductivity, which may play an important role for such large particles. We investigated layers constructed from large aggregates and having various thicknesses and porosity and evaluated the effective sublimation of water ice at different heliocentric distances. For radiati ve conducti vity, approximate commonly used models and the complicated model based on the dense-medium radiati ve transfer theory were compared. It was shown that for millimetre-size aggregates careful consideration of the radiative thermal conductivity is required since this mechanism of energy transfer may change the resulting gas productivity by several times. We demonstrate that our model is more realistic for an evolved comet than simple models parameterizing the properties of the cometary surface layer, yet maintains comparable computational complexity

    Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko

    No full text
    We report on the detection and characterization of more than 6300 polygons on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, using images acquired by the OSIRIS camera onboard Rosetta between August 2014 and March 2015. They are found in consolidated terrains and grouped in localized networks. They are present at all latitudes (from North to South) and longitudes (head, neck, and body), sometimes on pit walls or following lineaments. About 1.5% of the observed surface is covered by polygons. Polygons have an homogeneous size across the nucleus, with 90% of them in the size range 1 – 5 m and a mean size of 3.0 ± 1.4 m. They show different morphologies, depending on the width and depth of their trough. They are found in networks with 3- or 4-crack intersection nodes. The polygons observed on 67P are consistent with thermal contraction crack polygons formed by the diurnal or seasonal temperature variations in a hard (MPa) and consolidated sintered layer of water ice, located a few centimeters below the surface. Our thermal analysis shows an evolution of thermal contraction crack polygons according to the local thermal environment, with more evolved polygons (i.e. deeper and larger troughs) where the temperature and the diurnal and seasonal temperature range are the highest. Thermal contraction crack polygons are young surface morphologies that probably formed after the injection of 67P in the inner solar system, typically 100,000 years ago, and could be as young as a few orbital periods, following the decreasing of its perihelion distance in 1959 from 2.7 to 1.3 a.u. Meter scale thermal contraction crack polygons should be common features on the nucleus of Jupiter family comets
    corecore