125 research outputs found

    Trade-offs between storage and survival affect diapause timing in capital breeders

    Get PDF

    MHC allele frequency distributions under parasite-driven selection: A simulation model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extreme polymorphism that is observed in major histocompatibility complex (MHC) genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage) and/or by rare MHC alleles (negative frequency-dependent selection). The Ewens-Watterson test (EW) is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately.</p> <p>Results</p> <p>In agreement with simple models of symmetrical overdominance, we found that heterozygote advantage acting alone in populations does, indeed, result in more even allele frequency distributions than expected under neutrality, and this is easily detectable by EW. However, under negative frequency-dependent selection, or under the joint action of negative frequency-dependent selection and heterozygote advantage, distributions of allele frequencies were less predictable: the majority of distributions were indistinguishable from neutral expectations, while the remaining runs resulted in either more even or more skewed distributions than under neutrality.</p> <p>Conclusions</p> <p>Our results indicate that, as long as negative frequency-dependent selection is an important force maintaining MHC variation, the EW test has limited utility in detecting selection acting on these genes.</p

    The Topography of the Town of Pathyris in the Light of the Current Research

    Get PDF
    The town of Per-Hathor, also known under its Greek name Pathyris, was occupied since the Predynastic Period up to the medieval times. It is well known for its Ptolemaic papyri, ostraka, and inscribed wooden tablets, which enable scholars to attempt reconstructions of the topography and social life in the settlement. What the previous studies lacked were a detail spatial and archaeological data regarding this area. The Gebelein Archaeological Project was initiated in 2013 and one of its aims is to fulfill this void

    Nesting synchrony and clutch size in migratory birds: Capital versus income breeding determines responses to variable spring onset

    Get PDF
    Synchronous reproduction of birds has often been explained by benefits from nesting together, but this concept fails to explain observed intraspecific variation and climate-mediated changes of breeding synchrony. Here, we present a theoretical model of birds that store resources for reproduction (capital breeders) to show how breeding synchrony, clutch size, and offspring recruitment respond to changes in timing of first possible breeding date. Our approach is based on individual fitness maximization when both prebreeding foraging and offspring development are time constrained. The model predicts less synchronous breeding, smaller clutch size, and higher chances for offspring recruitment in capital breeding birds that advance their nesting. For contrast, we also show that birds that need to acquire resources during egg laying (income breeders) do not change nesting synchrony but increase clutch size along with earlier breeding. The prediction of stronger nesting synchronization of capital breeders in years with late nesting onset is confirmed by empirical data on breeding synchrony of a high-latitude capital breeding sea duck, the common eider (Somateria mollissima). We predict that in warming high-latitude ecosystems, bird species that depend on stored reserves for reproduction are expected to desynchronize their nesting.publishedVersio

    Immunogenetic novelty confers a selective advantage in host–pathogen coevolution

    Get PDF
    The major histocompatibility complex (MHC) is crucial to the adaptive immune response of vertebrates and is among the most polymorphic gene families known. Its high diversity is usually attributed to selection imposed by fast-evolving pathogens. Pathogens are thought to evolve to escape recognition by common immune alleles, and, hence, novel MHC alleles, introduced through mutation, recombination, or gene flow, are predicted to give hosts superior resistance. Although this theoretical prediction underpins host–pathogen “Red Queen” coevolution, it has not been demonstrated in the context of natural MHC diversity. Here, we experimentally tested whether novel MHC variants (both alleles and functional “supertypes”) increased resistance of guppies (Poecilia reticulata) to a common ectoparasite (Gyrodactylus turnbulli). We used exposure-controlled infection trials with wild-sourced parasites, and Gyrodactylus-naïve host fish that were F2 descendants of crossed wild populations. Hosts carrying MHC variants (alleles or supertypes) that were new to a given parasite population experienced a 35–37% reduction in infection intensity, but the number of MHC variants carried by an individual, analogous to heterozygosity in single-locus systems, was not a significant predictor. Our results provide direct evidence of novel MHC variant advantage, confirming a fundamental mechanism underpinning the exceptional polymorphism of this gene family and highlighting the role of immunogenetic novelty in host–pathogen coevolution

    Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse?

    Get PDF
    The ability of natural populations to adapt to new environmental conditions is crucial for their survival and partly determined by the standing genetic variation in each population. Populations with higher genetic diversity are more likely to contain individuals that are better adapted to new circumstances than populations with lower genetic diversity. Here, we use both neutral and major histocompatibility complex (MHC) markers to test whether small and highly fragmented populations hold lower genetic diversity than large ones. We use black grouse as it is distributed across Europe and found in populations with varying degrees of isolation and size. We sampled 11 different populations; five continuous, three isolated, and three small and isolated. We tested patterns of genetic variation in these populations using three different types of genetic markers: nine microsatellites and 21 single nucleotide polymorphisms (SNPs) which both were found to be neutral, and two functional MHC genes that are presumably under selection. The small isolated populations displayed significantly lower neutral genetic diversity compared to continuous populations. A similar trend, but not as pronounced, was found for genotypes at MHC class II loci. Populations were less divergent at MHC genes compared to neutral markers. Measures of genetic diversity and population genetic structure were positively correlated among microsatellites and SNPs, but none of them were correlated to MHC when comparing all populations. Our results suggest that balancing selection at MHC loci does not counteract the power of genetic drift when populations get small and fragmented
    corecore