121 research outputs found

    Contrasting Effects of Low-Dose IL-2 on Vaccine-Boosted Simian Immunodeficiency Virus (SIV)-Specific CD4+ and CD8+ T Cells in Macaques Chronically Infected with SIVmac251

    Get PDF
    Abstract IL-2, the first cytokine discovered with T cell growth factor activity, is now known to have pleiotropic effects on T cells. For example, it can promote growth, survival, and differentiation of Ag-selected cells, or facilitate Ag-induced cell death of T cells when Ag persists, and in vivo, it is thought to contribute to the regulation of the size of adaptive T cell response. IL-2 is deficient in HIV-1 infection and has been used in the management of HIV-1-infected individuals undergoing antiretroviral therapy. In this study, we investigated how continuous low-dose IL-2 affected the CD4+ and CD8+ T cell response induced by two inoculations of a canarypox recombinant SIV-based vaccine candidate in healthy macaques chronically infected with SIVmac251. These macaques had normal levels of CD4+ T cells at the beginning of antiretroviral therapy treatment. Vaccination in the presence of IL-2 significantly augmented Gag-specific CD8+ T cell responses, but actually reduced Gag-specific CD4+ T cell responses. Although IL-2 at low doses did not change the overall concentration of circulating CD4+ or CD8+ T cells, it expanded the frequency of CD4+CD25+ T cells. Depletion of the CD4+CD25+ T cells in vitro, however, did not result in a reconstitution of Gag-specific CD4+ responses or augmentation of SIV-specific CD8+ T cell responses. Thus, we conclude that the decrease in virus-specific CD4+ T cell response may be due to IL-2-promoted redistribution of cells from the circulation, or due to Ag-induced cell death, rather than suppression by a T regulatory population

    Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAims: Recessive PDX1 (IPF1) mutations are a rare cause of pancreatic agenesis, with three cases reported worldwide. A recent report described two cousins with a homozygous hypomorphic PDX1 mutation causing permanent neonatal diabetes with subclinical exocrine insufficiency. The aim of our study was to investigate the possibility of hypomorphic PDX1 mutations in a large cohort of patients with permanent neonatal diabetes and no reported pancreatic hypoplasia or exocrine insufficiency. Methods: PDX1 was sequenced in 103 probands with isolated permanent neonatal diabetes in whom ABCC8, KCNJ11 and INS mutations had been excluded. Results: Sequencing analysis identified biallelic PDX1 mutations in three of the 103 probands with permanent neonatal diabetes (2.9%). One proband and his affected brother were compound heterozygotes for a frameshift and a novel missense mutation (p.A34fsX191; c.98dupC and p.P87L; c.260C>T). The other two probands were homozygous for novel PDX1 missense mutations (p.A152G; c.455C>G and p.R176Q; c.527G>A). Both mutations affect highly conserved residues located within the homeobox domain. None of the four cases showed any evidence of exocrine pancreatic insufficiency, either clinically, or, where data were available, biochemically. In addition a heterozygous nonsense mutation (p.C18X; c.54C>A) was identified in a fourth case. Conclusions: This study demonstrates that recessive PDX1 mutations are a rare but important cause of isolated permanent neonatal diabetes in patients without pancreatic hypoplasia/agenesis. Inclusion of the PDX1 gene in mutation screening for permanent neonatal diabetes is recommended as a genetic diagnosis reveals the mode of inheritance, allows accurate estimation of recurrence risks and confirms the requirement for insulin treatment. Β© 2013 The Authors. Diabetic Medicine Β© 2013 Diabetes UK.Diabetes UKEuropean Union FP

    Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth

    Get PDF
    OBJECTIVE: Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight. RESEARCH DESIGN AND METHODS: We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring. RESULTS: We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11-31], P = 2 x 10(-5), and 14 g [4-23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39-120) lighter at birth than the 8% carrying none (P(trend) = 5 x 10(-7)). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus. CONCLUSIONS: Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype

    Epithelial Immunization Induces Polyfunctional CD8+ T Cells and Optimal Mousepox Protection.

    Get PDF
    We assessed several routes of immunization with vaccinia virus (VACV) in protecting mice against ectromelia virus (ECTV). By a wide margin, skin scarification provided the greatest protection. Humoral immunity and resident-memory T cells notwithstanding, several approaches revealed that circulating, memory CD8(+) T cells primed via scarification were functionally superior and conferred enhanced virus control. Immunization via the epithelial route warrants further investigation, as it may also provide enhanced defense against other infectious agents

    Macaque models of human infectious disease.

    Get PDF
    Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents-bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease

    Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination

    Get PDF
    Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92–95% (166–192 proteins) of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins) of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome

    Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus

    Get PDF
    Monkeypox virus (MPXV) infection in humans results in clinical symptoms very similar to ordinary smallpox. Aerosol is a route of secondary transmission for monkeypox, and a primary route of smallpox transmission in humans. Therefore, an animal model for aerosol exposure to MPXV is needed to test medical countermeasures. To characterize the pathogenesis in cynomolgus macaques (Macaca fascicularis), groups of macaques were exposed to four different doses of aerosolized MPXV. Blood was collected the day before, and every other day after exposure and assessed for complete blood count (CBC), clinical chemistry analysis, and quantitative PCR. Macaques showed mild anorexia, depression, and fever on day 6 post-exposure. Lymphadenopathy, which differentiates monkeypox from smallpox, was observed in exposed macaques around day 6 post-exposure. CBC and clinical chemistries showed abnormalities similar to human monkeypox cases. Whole blood and throat swab viral loads peaked around day 10, and in survivors, gradually decreased until day 28 post-exposure. Survival was not dose dependent. As such, doses of 4Γ—104 PFU, 1Γ—105 PFU, or 1Γ—106 PFU resulted in lethality for 70% of the animals, whereas a dose of 4Γ—105 PFU resulted in 85% lethality. Overall, cynomolgus macaques exposed to aerosolized MPXV develop a clinical disease that resembles that of human monkeypox. These findings provide a strong foundation for the use of aerosolized MPXV exposure of cynomolgus macaques as an animal model to test medical countermeasures against orthopoxviruses

    Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man

    Get PDF
    notes: PMCID: PMC3887257This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development.Wellcome TrustDiabetes UKEuropean Community’s Seventh Framework Programme (FP7/2007-2013

    Expanding the Repertoire of Modified Vaccinia Ankara-Based Vaccine Vectors via Genetic Complementation Strategies

    Get PDF
    nkara (MVA) is a safe, highly attenuated orthopoxvirus that is being developed as a recombinant vaccine vector for immunization against a number of infectious diseases and cancers. However, the expression by MVA vectors of large numbers of poxvirus antigens, which display immunodominance over vectored antigens-of-interest for the priming of T cell responses, and the induction of vector-neutralizing antibodies, which curtail the efficacy of subsequent booster immunizations, remain as significant impediments to the overall utility of such vaccines. Thus, genetic approaches that enable the derivation of MVA vectors that are antigenically less complex may allow for rational improvement of MVA-based vaccines. during infection, and that the processes governing the generation of antiviral antibody responses are more readily saturated by viral antigen than are those that elicit CD8+ T cell responses. deletion, enables the generation of novel replication-defective MVA mutants and expands the repertoire of genetic viral variants that can now be explored as improved vaccine vectors

    Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus

    Get PDF
    Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1βˆ’/βˆ’) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (Β΅MT) produced no mortality. However, viral clearance in Β΅MT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1βˆ’/βˆ’ with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1βˆ’/βˆ’, and passive transfer of WT T cells to Rag1βˆ’/βˆ’ animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify individuals with higher risk of complications after infection with poxvirus
    • …
    corecore