31 research outputs found
Revealing the Mechanism of Sodium Diffusion in NaxFePO4 Using an Improved Force Field
Olivine NaFePO4 is a promising cathode material for Na-ion batteries. Intermediate
phases such as Na0.66FePO4 govern phase stability during intercalation-deintercalation
processes, yet little is known about Na+ diffusion in NaxFePO4 (0 < x < 1). Here
we use an advanced simulation technique, Randomized Shell Mass Generalized Shadow
Hybrid Monte Carlo Method (RSM-GSHMC) in combination with a specifically developed
force field for describing NaxFePO4 over the whole range of sodium compositions,
to thoroughly examine Na+ diffusion in this material. We reveal a novel mechanism
through which Na+/Fe2+ antisite defect formation halts transport of Na+ in the main
diffusion direction [010], while simultaneously activating diffusion in the [001] channels.
A similar mechanism was reported for Li+ in LiFePO4, suggesting that a transition from
one- to two-dimensional diffusion prompted by antisite defect formation is common to
olivine structures, in general.MTM2013-46553-C3-1-P
ENE2016-81020-R
SGI/IZO-SGIker UPV/EHU
i2BASQUE academic network
Barcelona Supercomputer Cente
Neutrino Interferometry In Curved Spacetime
Gravitational lensing introduces the possibility of multiple (macroscopic)
paths from an astrophysical neutrino source to a detector. Such a multiplicity
of paths can allow for quantum mechanical interference to take place that is
qualitatively different to neutrino oscillations in flat space. After an
illustrative example clarifying some under-appreciated subtleties of the phase
calculation, we derive the form of the quantum mechanical phase for a neutrino
mass eigenstate propagating non-radially through a Schwarzschild metric. We
subsequently determine the form of the interference pattern seen at a detector.
We show that the neutrino signal from a supernova could exhibit the
interference effects we discuss were it lensed by an object in a suitable mass
range. We finally conclude, however, that -- given current neutrino detector
technology -- the probability of such lensing occurring for a
(neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation
-- accepted for publication in Phys.Rev.D. Extra author adde
Análise de frações de fibra alimentar em cultivares de feijão cultivadas em dois ambientes
GWAS for Systemic Sclerosis Identifies Multiple Risk Loci and Highlights Fibrotic and Vasculopathy Pathways
Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.Funding: This work was supported by Spanish Ministry of Economy and Competitiveness (grant ref. SAF2015-66761-P), Consejeria de Innovacion, Ciencia y Tecnologia, Junta de Andalucía (P12-BIO-1395), Ministerio de Educación, Cultura y Deporte through the program FPU, Juan de la Cierva fellowship (FJCI-2015-24028), Red de Investigación en Inflamación y Enfermadades Reumaticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013), and Scleroderma Research Foundation and NIH P50-HG007735 (to H.Y.C.). H.Y.C. is an Investigator of the Howard Hughes Medical Institute. PopGen 2.0 is supported by a grant from the German Ministry for Education and Research (01EY1103). M.D.M and S.A. are supported by grant DoD W81XWH-18-1-0423 and DoD W81XWH-16-1-0296, respectively
RICORS2040 : The need for collaborative research in chronic kidney disease
Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
Physics with the KLOE-2 experiment at the upgraded DANE
Investigation at a --factory can shed light on several debated issues
in particle physics. We discuss: i) recent theoretical development and
experimental progress in kaon physics relevant for the Standard Model tests in
the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum
Mechanics from time evolution of entangled kaon states, iii) the interest for
improving on the present measurements of non-leptonic and radiative decays of
kaons and eta/eta mesons, iv) the contribution to understand the
nature of light scalar mesons, and v) the opportunity to search for narrow
di-lepton resonances suggested by recent models proposing a hidden dark-matter
sector. We also report on the physics in the continuum with the
measurements of (multi)hadronic cross sections and the study of gamma gamma
processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added
reference to section
Prospects for e+e- physics at Frascati between the phi and the psi
We present a detailed study, done in the framework of the INFN 2006 Roadmap,
of the prospects for e+e- physics at the Frascati National Laboratories. The
physics case for an e+e- collider running at high luminosity at the phi
resonance energy and also reaching a maximum center of mass energy of 2.5 GeV
is discussed, together with the specific aspects of a very high luminosity
tau-charm factory. Subjects connected to Kaon decay physics are not discussed
here, being part of another INFN Roadmap working group. The significance of the
project and the impact on INFN are also discussed. All the documentation
related to the activities of the working group can be found in
http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table
