
Revealing the Mechanism of Sodium Diffusion

in NaxFePO4 Using an Improved Force Field

Mauricio R. Bonilla,∗,† Ariel Lozano,† Bruno Escribano,† Javier Carrasco,‡ and

Elena Akhmatskaya†,¶

†Basque Center for Applied Mathematics, Alameda de Mazarredo 14 (48009) Bilbao, Spain

‡CIC EnergiGUNE, Albert Einstein 48 (01510) Miñano, Spain

¶IKERBASQUE, Basque Foundation for Science (48013) Bilbao, Spain

E-mail: mrincon@bcamath.org

Abstract

Olivine NaFePO4 is a promising cathode material for Na-ion batteries. Intermediate

phases such as Na0.66FePO4 govern phase stability during intercalation-deintercalation

processes, yet little is known about Na+ diffusion in NaxFePO4 (0 < x < 1). Here

we use an advanced simulation technique, Randomized Shell Mass Generalized Shadow

Hybrid Monte Carlo Method (RSM-GSHMC) in combination with a specifically devel-

oped force field for describing NaxFePO4 over the whole range of sodium compositions,

to thoroughly examine Na+ diffusion in this material. We reveal a novel mechanism

through which Na+/Fe2+ antisite defect formation halts transport of Na+ in the main

diffusion direction [010], while simultaneously activating diffusion in the [001] channels.

A similar mechanism was reported for Li+ in LiFePO4, suggesting that a transition from

one- to two-dimensional diffusion prompted by antisite defect formation is common to

olivine structures, in general.
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Introduction

Today’s commercial rechargeable batteries rely on Li-ion technology. Yet the expansion of the

battery market toward electric vehicles and large-scale grid storage creates some important

concerns.1 One particular worry is that a massive use of lithium in the future will probably

be tied to steeply increasing prices and sustainability issues. Thus convenient alternatives

to lithium are needed. From a chemical viewpoint, sodium is positioned immediately below

lithium in the periodic table and, therefore, it is its natural surrogate.2,3 Added to this, the

high abundance, environment-friendly nature, and low cost of sodium have made research in

Na-based batteries a topic of high interest in recent years.4–12

For the past few decades, research in Li-ion batteries has been racing to gather knowledge

on the redox chemistry between lithium and a wide range of host materials (see, e.g. Nitta

et al.13 for a brief review). Despite the chemical similarity between lithium and sodium,

these accomplishments must be taken with caution when considering analogous Na-based

electroactive materials. One prominent example is graphite, which is commonly used as

anode in today’s Li-ion batteries;14,15 yet graphite does not intercalate sodium under mod-

erate conditions.16,17 The origin of this difference has remained a mistery for a long time.

Only very recently, first-principles calculations were able to shed light into this issue by

showing that Li–C bonds in graphite are enhanced due to a covalent contribution, which

is missing in the case of Na–C bonds and makes Na-intercalated graphite unstable.18 This

particular example highlights two important general conclusions: (i) beyond obvious dif-

ferences of mass and size between lithium and sodium cations, the chemical behavior (i.e.

electrochemial performance) of Li- and Na-intercalated compounds can also be very different

due to electronic structure effects; and (ii) atomistic modeling is a useful approach to close

the existing gap between our extensive knowledge on Li-based electroactive materials and

equivalent Na-based ones.

Here we use atomistic modeling to examine a promising cathode material for Na-ion

batteries, olivine NaFePO4. From a Li-based viewpoint, sustainability, and cost driven
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research on polyanionic iron-based materials has led us to olivine LiFePO4, which has clearly

been the most studied one to date among commercial cathode materials.19 LiFePO4 shows

stand-out features such as high stability, high rate capability, and sustained high voltage

throughout the whole discharge cycle. In principle, one could expect NaFePO4 to inherit

these properties from its isostructural lithium counterpart. Therefore, there has been a

recent flurry of interest in NaFePO4 (see, e.g. Fang et al.20). The first fundamental studies

revealed that the intercalation chemistry of lithium and sodium in FePO4 are, however,

significantly different.21,22 These differences are generally attributed to the formation of

ordered partially sodiated structures in the case of NaFePO4
20,23–25 as opposed to the single-

phase behavior of LiFePO4.26–28 The formation of stable Na+ arrangements adds therefore

structural complexity to the study of sodium intercalation at the molecular level. This

issue is particularly relevant when studying dynamic properties such as Na+ mobility using

simulations, requiring large supercells and long simulation times to account for possible

sodium orderings. These requirements make the use of first-principles methods, such as

density funtional theory (DFT), prohibitive in terms of computational cost.

Our study addresses this computational challenge as follows. First, we have chosen to

apply an enhanced sampling technique instead of conventional molecular dynamics (MD) in

order to mitigate the need for too long simulation times. In particular, we have used the

Randomized Shell Mass Generalized Shadow Hybrid Monte Carlo method (RSM-GSHMC),

which we developed and tested on olivine NaFePO4 before.29 Second, we have developed a

robust force field for NaFePO4 in order to effectively reduce the computational cost associated

with DFT calculations when dealing with large supercells, without sacrificing accuracy and

predictiveness. The proposed new force field includes polarizability effects through a core–

shell model and it has specifically been designed to describe simultaneously Fe2+ and Fe3+.

This is important because partially sodiated FePO4 (which we will refer to as NaxFePO4)

contains a mixture of Fe2+ and Fe3+ species due to the presence of Na+ vacancies in the

structure. In this regard, the proposed force field goes beyond the previously suggested
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interatomic potentials for NaFePO4, which were specifically derived to simulate fully sodiated

structures and thus are only valid when one type of iron species, Fe2+, is present.30,31 Notably,

our force field is parametrized using an extensive DFT-based configuration data set that

covers a wide range of sodium concentrations. This aspect provides a level of predictibility

not available in force fields obtained from a limited amount of experimental data.

In the following, we first set out the details of the new developed force field for NaxFePO4.

Then we thoroughly discuss accuracy and sampling efficiency aspects of our proposed simula-

tion approach. Finally our main results are reported and analyzed on the basis of calculated

Na+ diffusion pathways at different temperatures and sodium concentrations, comparing the

performance of conventional MD and RSM-GSHMC simulations combined with the new and

previously known force fields. Our findings reveal novel Na+ diffusion dynamics, which ac-

tively involves the formation of Na+/Fe2+ antisite defects. Such defect formation processes

are generally assumed to take place during ion intercalation in polyanionic iron-based ma-

terials,32,33 but this is the first time that they have directly been visualized in atomistic

simulations. Finally, we put forward that the accelerated sampling provided by the RSM-

GSHMC method can be a very useful technique to observe, in general, this kind of rare

events in solid state ionics within reasonable simulation time scales.

Development of the New Force Field

Understanding Na+ diffusion in NaxFePO4 is fundamentally important when considering its

use as a cathode material in Na-ion batteries. While DFT studies have provided valuable

insights into a range of materials properties,34,35 these works are limited to short time-scales

over prespecified migration paths. In order to explore longer time-scales without migration

path constrains, simpler classical interatomic potentials are needed.36–39 The development

of such potentials (i.e., a force field) has three fundamental requirements:

• an appropriate functional form of an interaction potential,
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• a training data set of structural, mechanical and/or thermodynamic properties (e.g.

experimental, computed, etc.) to fit the model and

• an optimization strategy to perform the fitting.

In the following subsections, these three aspects are described specifically for the devel-

opment of a new force field for NaxFePO4.

Force Field Model

Long-range electrostatic interactions in ionic liquids or metal oxides, including all typical

metal-ion cathodes, represent a challenge for the development of accurate force fields. In

particular, ionic polarizability in these materials can be strong enough to significantly in-

fluence thermodynamic and transport properties.40–43 In this work, ionic polarizability is

described through the core–shell model suggested by Dick and Overhauser,44 in which a

central core of a charge X and a shell of a charge Y are introduced in such a way that the

sum of these charges X + Y equals to the valence state of the ion. The core and shell are

coupled together in a unit via a harmonic potential, which allows the shell to move with

respect to the core, thus simulating a dielectric polarization. Following Whiteside et al.,31

only the Fe2+ and the O2− ions are split into core–shell units. Hereafter, Osh and Fesh will

refer to the O2− and Fe2+ shells, respectively.

The total potential energy in our model is given by

Utot = UC + UBorn + UCS + Uangle, (1)

where UC represents long-range Coulomb interactions, UBorn short-range repulsion and long-

range van der Waals forces, UCS is the interaction within core–shell units and Uangle is an

angular term for the PO4 tetrahedral units.
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Coloumbic interactions are explicitely given by

UC =
1

4πε

N∑
i,j=1

qiqj
rij

, (2)

where ε is the vacuum permittivity; rij is the distance between particles i and j; qi and qj

are their respective charges; and N is the total number of particles. The Born interaction is

described by45

UBorn =
N∑

i,j=1

Aijexp

(
− rij
ρij

)
− Cij

r6ij
+
Dij

r8ij
, (3)

where, Aij, ρij, Cij and Dij are positive constants defining the shapes of the repulsive and

attractive terms of the potential.

The core–shell interaction energy is estimated as

UCS =
1

2

L∑
l=1

klr
2
l , (4)

where kl is the spring constant for the l–th core–shell unit, rl is the core–shell distance, and

L is the total number of shells. Importantly, neither Coloumbic nor Born interactions are

computed within core–shell units. Moreover, for ions described as core–shell units only the

shells are involved in the estimation of Born interactions, while the cores participate only

electrostatically.

Following Whiteside et al.,31 a three-body angular interacion (Osh-P-Osh) in the PO4

tetrahedral units is also included

Uangle =
K∑
k=1

1

2
kang(θk − θ0)2, (5)

where kang is the spring constant, θ0 is the equilibrium bond angle, θk is the current value

of the bond k, and K is the total number of angle interactions.

Two main approaches are found in the literature to simulate core–shell systems: the
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so-called shell relaxation (CS-min) scheme46 and the adiabatic shells (CS-adi) method.40

In the CS-min scheme an energy minimization is performed after each MD step in order

to update the shell positions, making this approach very computationally demanding. Con-

versely, in the CS-adi method, a small fraction y of the ion mass is put on the shell, whereas

the remaining 1–y fraction is left to the core. Then, all the particle positions propagate

following the conventional MD technique. For a sufficiently small value of y, the shells adia-

batically follow the cores motion during the simulation. However, the period of the core–shell

spring is proportional to
√
y(y − 1),40 which means that a small y requires a small integra-

tion time-step. In recent work from this group, a systematic methodology was proposed to

introduce a shell mass in a way that minimizes the negative effect on the kinetic energy of

the system.29 This methodology is used in the present study.

Parameter Estimation with potfit

The program potfit 47,48 was chosen to parametrize the proposed force field. potfit makes

use of the force - matching method,49 in which the potential parameters are adjusted to

optimally reproduce forces, stresses and energies from reference data obtained through first

- principles calculations.

All reference configurations in this study were computed using the plane wave DFT code

VASP.50,51 For configuration m consisting of Nm particles, VASP calculates one energy e0m,

six components of the stress tensor s0m,l, (l = 1, ..., 6) and 3Nm Cartesian force components,

fm,n, (n = 1, ..., 3Nm). The details of the generated DFT database are provided in the next

subsection, while the cost function implemented in potfit 47,48 is described in section S1 of

the Supporting Information (SI).

Instead of allowing all parameters to freely vary, only the van der Waals parameters

between oxygen shells (Osh–Osh) and those from the angular contribution (Osh–P–Osh) were

estimated. All other parameters were left as originally proposed by Whiteside et al.31 It was

not necessary to modify the parameters for other species because the most significant effect
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observed when removing Na+ from the NaFePO4 system was an anomalous displacement

of the (PO4)3− units (see section S3 in the SI). Hence, training the Born potential in order

to capture the Osh–Osh repulsion in the presence of a neighboring vacancy was enough for

producing a robust force field applicable to materials with different sodium concentrations.

It is important to properly select the initial location of the shells prior to the minimization

procedure. In section S2 of the SI a simple and consistent solution to perform this task is

provided. Finally, we must note that the potfit package was modified to introduce the Born

model, the damped shifted force method for the Coulomb sum and the three-body angular

interactions. In addition, we tuned some built-in parameters as described in the S.I. and

introduced the option to ignore Coulomb interactions within the core–shell units.

Development of the DFT Database

We generated a set of 58 olivine NaxFePO4 configurations consisting of (a) 11 geometrically

optimized structures at 0 K, ranging from 72 to 84 atoms (3 unit cells in the [010] direction)

and (b) 58 equilibrated snapshots taken out of ab initio MD trajectories, from an ideal

NaFePO4 crystal at 500 and 1000 K.

To obtain the geometrically optimized structures, spin-polarized DFT calculations were

performed as implemented in the VASP code51,52 at different sodium concentrations: x =

1.0, 0.83, 0.66, 0.58 and 0.0. We used as a reference the published convex hull of NaxFePO4

at 0 K.53 As shown by Saracibar et al.,53 the intermediate phases at x = 0.83 and x = 0.66

govern phase stability during intercalation/deintercalation. Moreover, for x > 0.5 certain

structures display negative formation energies and thus are likely to exist in a metastable

form for brief periods of time. On the other hand, all structures with x < 0.5 are unstable.

Many distinct supercells can be built satisfying x =0.83, 0.66 and 0.58. Hence, for every x we

chose the three configurations having the lowest formation energies as reported by Saracibar

et al.53

Projector augmented wave potentials54 were employed to replace the inner electrons,
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whereas Na (3s), Fe (3p, 3d, 4s), P (3s, 3p), and O (2s, 2p) valence electrons were expanded in

plane-waves with a cutoff energy of 600 eV. The Perdew–Burke–Ernzerhof (PBE)54 exchange-

correlation functional was used together with a Monkhorst-Pack grid with at least 2×4×5

k-point sampling per 1×1×1 unit cell. In order to describe the localized Fe 3d states a

Hubbard U-like term was added to the PBE functional.55 Here we used a value of U =

4.3 eV for Fe atoms, as proposed by Zhou et al.56 for LiFePO4. The 11 structures were

fully optimized (cell parameters, volume cells, and atomic positions) with a residual force

threshold of 0.02 eV/Å. These computational settings guarantee a tight convergence in total

energies (less than 5 meV per formula unit).

Starting from the optimal olivine NaFePO4, ab initio MD simulations were performed

at 500 and 1000 K using VASP.51,52 The model system was first thermally equilibrated in

a microcanonical ensemble (NVE) for 2 ps and then run for 20 ps in a canonical ensemble

(NVT) at the chosen temperatures controlled by a Nose Hoover thermostat.57 42 configu-

rations at 500 K and 16 configurations at 1000 K were extracted from the production runs

and subsequently incorporated into the training data set.

Optimization of the force field parameters with potfit completed with the following root

mean -square -errors (eq. S1 in the SI): ∆Ff = 0.32 eV/Å, ∆Fs = 0.014 eV/Å3 and ∆Fe =

1.49 eV. The resulting parameters are listed in Table 1. We refer to the force field developed

here as NaxFePO4-ff, whereas that from Whiteside et al.31 as Whiteside-ff. It is interesting

to note that the van der Waals parameters for Fe2+–Osh2− worked very well to describe the

Fe3+–Osh2− interaction. It is possible that optimizing the Fe3+–O2+
sh parameters could lead to

some slight improvement, and, indeed, we tried this alternative. However, the fact that the

concentrations of Fe3+ depends on x makes such optimization particularly complex. In our

case, given that more configurations are available at high x in the data set, the parameters

for Fe3+ obtained through simulated annealing favored richly sodiated configurations. On

the other hand, those with low x expanded unrealistically due to excessive Fe3+–O2−
sh van der

Waals repulsion. Focusing only on O2−
sh –O

2−
sh and O2−

sh –P–O
2−
sh (P and O2−

sh concentrations are
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independent of x) leads to excellent results without the need for a much larger database.

In the coming sections, we proceed to perform atomistic simulations using different tech-

niques, such as MD and RSM-GSHMC, to validate and test the new force field. The valida-

tion includes comparison with DFT simulations, other force fields and experimental results

when available.

Table 1: Force Field Parameters for Olivine NaxFePO4 obtained with potfit (NaxFePO4-ff).
Only the parameters corresponding to the Osh–Osh and Osh - P - Osh differ from those
estimated by Whiteside et al., which are reported in parenthesis.

Born-Mayer-Huggins
Interactions A (eV) ρ (Å) C (eV Å6) D
Na+ - O2−

sh 629.768 0.317 0.0 0.0
Fe2+sh - O

2−
sh 1105.241 0.311 0.0 0.0

Fe3+- O2−
sh 1105.241 0.311 0.0 0.0

P5+ - O2−
sh 897.265 0.358 0.0 0.0

O2−
sh - O2−

sh 1506.355 0.100 36.212 1.01
(22764.3) (0.149) (44.53) (0.0)

Core–shell
Species Core charge Shell charge k (eV Å−2)
Fe2+ -0.997 2.997 19.26
O2− 0.96 -2.96 65.0

Angular
Bond kang (eV rad−2) θ0 (deg)

O2−
sh -P

5+-O2−
sh 4.159 109.47

(1.323) (109.47)

Validation

We check accuracy and performance of the newly proposed force field by comparing the

computed structural parameters, unit cell volumes and diffusion coefficients against those

obtained with Whiteside-ff, DFT and experiments when varying temperature and Na+ con-

centration.
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Methodology and Simulation Setup

Both force fields presented in Table 1 were implemented in the open source MD software

MultiHMC-GROMACS. This is an in-house software package for atomistic simulations based

on GROMACS version 4.5.4,58 which was modified to use hybrid Monte Carlo based meth-

ods59–61 and multistage integration schemes.62–64 It is available for public use under the GNU

Lesser General Public License.

As samplers, we alternatively used standard MD with a velocity Verlet integrator and

RSM-Generalized Shadow Hybrid Monte Carlo (RSM-GSHMC)29 with the two-stage MAIA

integrator.64

The GSHMC method is a type of hybrid Monte Carlo (HMC) which offers several im-

provements over standard HMC and MD by using modified energies instead of true Hamil-

tonians for sampling, in order to increase the sampling efficiency. The modified energies

or shadow Hamiltonians are better conserved by symplectic integrators, leading to a faster

convergence of GSHMC compared with HMC. The partial momentum update introduced in

GSHMC allows for retaining dynamical information, and thus makes the method applica-

ble to simulation of diffusion processes. The GSHMC method is particularly useful when

studying multidimensional spaces and rare events. In this study it is chosen to improve the

sampling of the ionic diffusivity of NaxFePO4. The details of the GSHMC method and its

implementation can be found elsewhere.61,65–69

In RSM-GSHMC, a mass randomization is applied to the masses of the shells O2−
sh and

Fe2+sh . This helps to reduce any potential negative effects on the kinetic properties of the

system when using an adiabatic core–shell model. In this study, RSM-GSHMC is combined

with the MAIA integrator which provides the highest accuracy among all other two-stage

splitting methods including Verlet.

Prior to performing the simulations, all systems were first stabilized using the steepest

descent method for energy minimization. This was followed by 50 ps of equilibration at

constant temperature and another 50 ps at constant pressure. The Andersen barostat70 was
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used to impose constant pressure for both MD and GSHMC as implemented in MultiHMC-

GROMACS.66 In MD we used a Nose-Hoover thermostat57 while the GSHMC method keeps

constant temperature by design.61 We used the force field parameters presented in Table 1

with a cutoff of 12 Å for electrostatics. Periodic boundary conditions were applied in the

three dimensions. The production simulations for various sodium concentrations between

x = 0 and x = 1 were run in the NPT ensemble over 10 ns at temperatures ranging between

10 and 900 K, at a pressure of 1 bar using a time step of 1 fs. For all the results presented in

this section, we employed 4th order shadow Hamiltonians and fixed the GSHMC parameters

to L=500 steps for trajectory lengths between Monte Carlo steps and to φ = 0.1 for the

partial momentum update.

Accuracy

In order to assess the accuracy of the newly proposed force field, we measure the unit cell

parameters for NaxFePO4 after a 3 ns simulation using RSM-GSHMC at a constant pressure

of 1 bar and a temperature of 300 K. Simulations are performed for systems with Na+

concentrations x = 0, 0.58, 0.66, 0.83, and 1. In Table 2 the simulation results alongside

with the experimental and DFT values53 are shown. Data for x = 0.58 are not included

given the lack of experiments and independent DFT values to compare with. Nevertheless,

it is worth mentioning that simulations using Whiteside-ff crash at this concentration.

We found that the divergence between the unit cell parameters calculated using two

different force fields was small, although NaxFePO4-ff achieved values slightly closer to the

experimental results. It was also found that NaxFePO4-ff succeded in simulations of a wider

variety of sodium ion concentrations, while simulations using Whiteside-ff became numeri-

cally unstable for x < 0.66 (see figure S3 in SI). Instability in the Whiteside-ff is not surprising

since the parameters were obtained by fitting with respect to the experimental bond lengths

and unit cell parameters of fully sodiated NaFePO4. In this regard, there is no expectation

for this force field to be applicable at lower levels of sodiation. In particular, the presence of
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sodium vacancies are likely to produce instabilities in systems simulated with Whiteside-ff,

given that this force field does not account for the presence of Fe3+.

Table 2: Computed lattice constants of olivine NaxFePO4 using RSM-GSHMC for varying
concentrations of Na+ at 300 K with both force fields. Experimental and DFT values are
taken from Saracibar et al.53

Param. (Å) Exp. DFT Whiteside-ff NaxFePO4-ff

FePO4 a 9.81 9.97 – 9.49
b 5.79 5.92 – 5.78
c 4.78 4.87 – 4.74

Na0.66FePO4 a 10.28 10.41 10.13 10.33
b 6.08 6.06 6.08 6.03
c 4.93 4.99 5.09 5.01

Na0.83FePO4 a 10.31 10.45 10.49 10.37
b 6.11 6.19 6.08 6.23
c 4.95 4.99 5.03 4.94

NaFePO4 a 10.41 10.50 10.32 10.45
b 6.22 6.27 6.33 6.26
c 4.95 4.99 5.07 4.99

In Figure 1 the volume expansion for a unit cell is presented for temperatures from

10 K to 900 K for a fully sodiated NaFePO4 system computed with RSM-GSHMC using

both Whiteside-ff and NaxFePO4-ff. One can see that the two force fields produce similar

trends, although the unit cell volume calculated with NaxFePO4-ff is generally higher and in

better agreement with the experimental results taken from Moreau et al.71 We notice that

Whiteside-ff provides a slightly more accurate estimate of dV /dT than does NaxFePO4-

ff, which is of interest for computing the thermal expansion coefficient. However, for the

calculation of the diffusivity, we expect NaxFePO4 -ff to perform better, because at this level

of confinement, diffusion is extremely sensitive to small changes in the cross section area

of the transport channels and the sites volume (see e.g. Krishna and Van Baten72). It is

also important to mention that Whiteside-ff at temperatures above 700 K could not produce

numerically stable simulations as a result of exceedingly large forces between oxygen shells.
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Figure 1: Unit cell volume expansion for temperatures from 10 to 900 K for a fully sodiated
NaFePO4 system computed using RSM-GSHMC with Whiteside-ff and NaxFePO4-ff. Exper-
imental results are taken from Moreau at al.71 For temperatures above 700 K, Whiteside-ff
could not produce numerically stable simulations.

Sampling Efficiency

Once it has been established that NaxFePO4-ff can reproduce structural parameters accu-

rately, we measure its performance by studying the rare events dynamics of Na+ diffusion

in NaxFePO4. For the following simulations, we focus on x = 0.66, as this ratio between

ions and vacancies is a stable intermediate phase and, therefore, interesting for the study of

charge transport dynamics during cycling.53 The diffusion coefficient is a notoriously difficult

property to measure in solid state atomistic simulations, requiring exceedingly large systems

and very long simulated times. Thus a force field which can more efficiently replicate the rare

jumps of Na+ ions along the crystallographic structure combined with an enhanced sampling

algorithm would be highly advantageous.

Simulations of 10 ns were performed with temperatures ranging from 10 to 900 K using

RSM-GSHMC combined with the two force fields and MD with NaxFePO4-ff. Diffusion at

temperatures below 300 K was very difficult to observe, indicating that even longer simu-

lations might be required. However, it was found that the number of ionic jumps is higher
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Figure 2: Three-dimensional diffusion coefficient and corresponding error bars at temper-
atures between 400 and 900 K for a Na0.66FePO4 system using both Whiteside-ff and
NaxFePO4-ff. The divergence observed at high temperatures is a consequence of the im-
proved sampling efficiency of the chosen sampler. At temperatures above 700 K, Whiteside-ff
could not produce numerically stable simulations.

when using NaxFePO4-ff instead of Whisteside-ff at temperatures above 0 K. For instance,

at 600 K, each Na+ performs in average ∼4 jumps/ns using NaxFePO4-ff, while only ∼2

jumps/ns using Whiteside-ff. NaxFePO4-ff does not lead to numerical instabilities, although

at temperatures above 900 K the system becomes amorphous. This is in agreement with

experimental observations using X-ray diffraction.71

The diffusion coefficients are estimated from the mean square displacements (MSD) ac-

cording to58

D = lim
t→∞

1

2nt
〈‖~ri(t)− ~ri(0)‖2〉i∈{Na+}, (6)

where n is dimensionality (1, 2 or 3 for one, two or three-dimensional diffusion, respec-

tively), ~ri is the position of atom i and {Na+} is the set of sodium atoms in the simulation

box.

Figure 2 shows the three-dimensional diffusion coefficients of Na+ for a range of tempera-
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tures using RSM-GSHMC with both force fields. We also plot results for similar simulations

using standard MD with NaxFePO4-ff. Comparison of the three curves suggests that not

only does the force field affects the diffusion coefficients but the sampling efficiency of the

chosen sampler also does. Indeed, at higher temperatures the computed diffusions using MD

and RSM-GSHMC combined with the same force field (for equal simulation times) diverge

visibly. This is a consequence of the higher sampling efficiency of GSHMC methods.61 For

longer simulation times, both methods are expected to converge.29

This is also confirmed by Figure 3, which presents the MSD for Na+ at 700 K in the

main diffusion direction, [010], obtained from both traditional MD and RSM-GSHMC. Con-

vergence to the equilibrium slope that provides the diffusion coefficient is reached nearly 2

ns quicker through RSM-GSHMC, demonstrating its ability to sample the configurational

space more efficiently than MD. We must stress that Figure 2 depicts the three-dimensional

diffusion coefficient, while Figure 3 depicts specifically the diffusivity along the [010] direc-

tion. Therefore, they are not necessarily equal. In particular, transport along the [100] axis

is slightly more favored when using RSM-GSHMC, and this is reflected in Figure 3.

The noise in the MSD curves in Figure 3 is at least partially due to the fact that a

fraction of the Na+ atoms do not perform any jump or jump only once, as illustrated in

Figure 6a. While the situation could be improved by extending the simulations, the fact,

that the polarizable core–shell model involves a very light particle (the shell), severely limits

the simulation time-step, and further increasing the simulation time comes with a significant

increase in the computation time.
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Figure 3: MSD at 700 K in the main diffusion direction, [010], using both traditional MD
and RSM-GSHMC combined with NaxFePO4-ff. Convergence to the equilibrium slope is
reached faster through RSM-GSHMC.

Results and Discussion

Study of Diffusion of Na+ in Na0.66FePO4

Since Na+ diffusion is an activated process with an energy barrier of 0.32–0.44 eV,30,34,35 its

study cannot be easily accessed through classical MDmethods. Moreover, the absence of suit-

able force fields for x < 1 has constrained previous studies to fully sodiated NaFePO4 by cre-

ating few Na+ vacancies in the lattice.30 First-principles analysis of diffusion in Na0.93FePO4

have determined that Na+ transport is limited to the [010] direction, on a curved path that

is perpendicular to the faces below the shared edges of NaO6 tehtrahedra (Figure 4). The

estimated activation energies range from 0.38 to 0.44 eV.34,35 A lower activation energy of

0.32 eV was obtained by Tripathi et al.30 using the Mott-Littleton scheme incorporated in

the GULP code73 and Whiteside-ff.

We use the RSM-GSHMC hybrid Monte Carlo scheme29,67,68,74 to explore for the first

time diffusion of Na+ in Na0.66FePO4, a relevant intermediate phase during the intercala-

tion/deintercalation process. The previous study using Whiteside-ff has demonstrated the
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Figure 4: (a) Structure of olivine Na0.66FePO4. The octahedral coordination around Na+
are shown in yellow, while the remaining atomic species are color coded as follows: O2+

in green, P5+ in purple, Fe2+ in blue and Fe3+ in red. The curved trajectory followed by
Na+ 31,35 along one of the channels in the main diffusion direction, [010], is depicted as the
solid orange line. Na+ vacancies and Fe3+ ions follow the banded arrangement displayed
in the figure. (b) Linear distance between Na+ sites in the [010] direction is 3.1 Å. This
is the length of individual Na+ jumps. (c) Cross section of a diffusion channel along [010].
The dimensions of the channel are measured between oxygen centers. The channels along
[001] are much narrower, suggesting that jumps in this direction would be rare in defect free
structures. The [100] is fully blocked.

ability of RSM-GSHMC to improve sampling over traditional MD in NaFePO4.29 Hence,

the method’s efficiency has been validated for this type of systems and the relatively small

changes in the force field proposed here are not expected to deteriorate it.

Using classical MD, Boulfelfel et al.75 showed that, at 1200 K, it takes an average of

1200 ps to generate a single Frenkel defect in LiFePO4. A similar time scale is reasonably

expected to operate for NaFePO4: while Na+ ions are larger than Li ions, the channel cross

section in NaFePO4 is larger than that in LiFePO4, somewhat compensating the ion size

effect.30 Consequently, long 10 ns simulations were performed at 300 K, 500 K, and 700 K.
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Figure 5: 10 ns simulation of Na0.66FePO4 at 700 K in the NPT ensamble using RSM-
GSHMC with NaxFePO4-ff (blue) and Whiteside et al.-ff (red). (a) MDPP during the 10 ns
run. The particles are ordered from minimum to maximum displacement. The dashed lines
represent displacements that must involve jumps between Na+ sites. (b), (c), and (d) show
the MSD vs time along the [010], [001], and [100] directions, respectively.

Figure 5(a) depicts the maximum displacement per particle (MDPP) during a 10 ns

run using RSM-GSHMC with NaxFePO4-ff and Whiteside-ff. The dashed horizontal lines

represents displacements a particle must perform in order to jump to an adjacent cavity.

Notably, in comparison to Whiteside-ff, NaxFePO4-ff allows for a larger proportion of par-

ticles (∼ 20%) to jump between cavities over the simulation time, thus producing a higher

diffusion coefficient (Figures 5(b) - (c)). This does not necessarily mean that Whiteside-ff

produces less accurate diffusivity results. However, the underestimated volumetric expan-

sion of the structure, observed in Figure 1 at 700 K with Whiteside-ff, may, indeed, lead

to slightly narrower channels and more constrained displacements and, as a result, to the
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underestimated diffusivity.

Figure 6(a) shows the MDPP after a 10 ns RSM-GSHMC run with NaxFePO4-ff at 300

and 500 K. As expected, the number of hopping particles is significantly lower compared

to that at 700 K (see Figure 5). Nevertheless, the MSD in the [010] direction presented

in Figure 6(b) is monotonically linear and provides a measure of the diffusion coefficient.

Interestingly, the slope of the MSD curve in the [001] direction is considerably lower than that

at 700 K, suggesting that a higher temperature promotes transport through the narrower

paths perpendicular to the main diffusion axis. This behavior was also captured in MD

simulations of LiFePO4 at 500 K,75 occurring at a rate of 1 or 2 events every 60 ps. In our

case, this is potentially a consequence of the volumetric expansion of the structure together

with thermally induced disorder. As a matter of fact, the heat treatment is known to

transform olivine NaFePO4 into the more thermodynamically stable maricite phase.76
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Figure 6: (a) MDPP after a 10 ns run at 300 and 500 K. (b) MSD vs time along the [010],
[100], and [001] directions for 10 ns simulation at 500 K.

At 300 K, diffusion is severely limited. Galvanostatic measurements estimate a diffusion

coefficient of 10−17 cm2/s,21 substantially below what can be probed through MD simula-

tions. While this macroscopic result likely incorporates a number of additional resistances,

it is evident that considerably larger simulation times are required to obtain an accurate

estimate.
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MD Trajectories Analysis at 700 K

During an MD run, it is important to distinguish between two types of vacancies in the

structure of olivine NaxFePO4. On the one hand, there are extrinsic vacancies associated

with the absence of Na+ with respect to the stoichiometric structure. These vacancies are

located in bands along the [011] direction and separated by Fe3+O6 octahedra, as shown in

Figure 4. On the other hand, there are intrinsic vacancies associated with the formation of

Frenkel defects during Na+ diffusion.

Figure 7 displays an interesting trajectory observed at 700 K. It also presents the typical

passage of Na+ through the extrinsic vacancies, not previously observed in MD studies. In

the past, Tealdi et al.77 simulated diffusion in Li0.75FePO4 using classical MD by assigning a

formal charge of +2.25 to all Fe ions. Because of the uniformity in the Fe charges, the initial

Li vacancies were distributed randomly, and their positions could vary freely over the course

of the simulations. Our approach is fundamentally different as it distinguishes between Fe2+

and Fe3+, putting stringent constraints on the possible location of the extrinsic vacancies (see

Figure 4). Over the course of our simulations extrinsic vacancies remain fixed, perturbed

only by the temporary presence of Na+ and Fe2+ ions. Hence, Tealdi et al. study represents

the limit of very fast polaron diffusion, while our study is concerned with the limit of very

slow (with respect to Na+ mobility) polaron diffusion.

The presence of four diametrically opposed Fe3+ ions around extrinsic vacancies, as in-

dicated by the double arrow in Figure 7(a), makes this type of vacancies highly repulsive to

Na+. Even under these circumstances, formation of an intrinsic vacancy due to diffusion of

the pink Na+ (jump 3 in Figure 7(b)) immediately prompts the rapid transport of the cyan-

labeled particle through the extrinsic vacancy, following the S-shaped trajectory presented in

jump 4 of Figure 7(b). Similarly, diffusion of the cyan Na+ to the adjacent site, as depicted

in jump 8 of Figure 7(c), activates the rapid transport of the orange ion trough the extrinsic

vacancy, following the S-shaped trajectory shown in jump 9 of Figure 7(c). In both cases,

the residence time of Na+ in the extrinsic vacancy site is below 2 ps, which means that the

21



entire movement, ∼ 6.2 Å in length, can essentially be considered as a single long jump.

Na+/Fe2+ “antisite" pair defects occur when one Na+ (ionic radius 1.02 Å) and one

Fe2+ (ionic radius 0.78 Å) are interchanged between their two nonequivalent M1 and M2

octahedral sites. For olivine LiFePO4, the prevalence of Li+/Fe2+ antisite defects is ∼1-

2% at room temperature.32,33,78,79 Since there is a considerable difference in radius between

Na+/Fe2+ compared to Li+/Fe2+ (ionic radius 0.74 Å for Li+), it is expected for Na+/Fe2+

antisites to be far less frequent. However, classical atomistic simulations indicate that the

Na+/Fe2+ antisite formation energy (0.86 eV) is comparable to that of Li+/Fe2+ antisite (0.74

eV).30 Hence, the prevalence of Na+/Fe2+ antisites in NaFePO4 is also likely to be ∼1-2%.

Notice that the presence of these defects blocks Na+ diffusion along the [010] direction.

Let us refer again to LiFePO4. For this cathode, computational and experimental studies

have shown that nanosize particles (100 nm) would be delithiated in less than 0.01 s, given

that the [010] chanels are nearly defect free. Even with only one defect per channel, there

would still be accessible charge carriers from the particle surface. In contrast, conductivity

studies performed by Amin et al.80 on macroscopic (millimeter scale) LiFePO4 single crystals

produce much lower diffusivities and more isotropic transport (i.e., diffusion perpendicular

to the [010] channel becomes more likely). DFT studies covering an exhaustive number of

diffusion paths81 produced 2D diffusivities (along the [010] and [001] directions: y and z axes

in Figure 7) that approximate better those experimentally observed in macrosocpic LiFePO4

than DFT-based diffusivities along [010] only .

While the effect of anisotropic diffusion in NaFePO4 has not been as extensively stud-

ied, the large discrepancies between the theoretically estimated one-dimensional diffusion

coefficient (∼10−10 cm2/s35) and that obtained from macroscopic measurements (∼10−17

cm2/s21) indicate that, on large scale devices, it could be quite significant. Our simulations

show, for the first time, that the blockage of the main diffusion channel ([010] direction) by

Fe2+ can in fact estimulate mobility in the [001] direction, potentially reducing the overall

two-dimensional diffusivity but allowing sodiation/desodiation to continue despite the tem-
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porary or permanent Fe2+ blockage of a diffusion channel. Figure 7 illustrates the mechanics

of this process. A Fe2+ ion can temporarily occupy an extrinsic vacancy (jump 1, Figure

7(b)), leading to the formation of an antisite - like defect when the nearest Na+ ion (green

particle) moves to the free Fe2+ site (jump 2 in Figure 7(b)). Given the difference in size

between Na+ and Fe2+, it is likely that the local structural deformation permits the trans-

fer of the green Na+ to the adjacent channel (jump 6 in Figure 7(c)) while simultaneously

allowing the blocking Fe2+ to remain for several tens of ps in the highly repulsive extrinsic

vacancy. A second sodium transfers to the adjacent channel (pink particle, jump 12 in Fig-

ure 7(d)) before the Fe2+ is reabsorbed into its original site (jump 13 in Figure 7(d)). Upon

reabsortion, diffusion continues in the preferential direction.

This result is in general agreement with simulations of two-dimensional diffusion in

LiFePO4:75,77,81 occasional jumps of charge carriers in the [001] can overcome (at a cost

of reduced diffusivity) the damaging effect of antisite defects. Notably, we did not observe

this phenomenon at 300 K. Nonetheless, this could be the result of insufficient simulation

times. All other diffusion events follow the trajectories extensively described in the liter-

ature.30,34,75 We believe that increasing simulation times along with the novel simulation

techniques such as RSM-GSHMC coupled with NaxFePO4-ff for the analysis of rare events

will allow unveiling the interesting and yet vastly understudied phenomenon of the filling of

extrinsic vacancies during actual intercalation/deintercalation processes.
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Figure 7: Two-dimensional trajectory at 700 K. At this temperature, the coordination poly-
hedra are slightly distorted. The red octahedra are Fe3+O6 units, the blue octahedra are
Fe2+O6 units, and the tetrahedrals correspond to (PO4)−3 units. The green, pink, cyan
and orange atoms are tagged Na+ ions; the remaining Na+ ions are colored in yellow. The
numbers in the figure specify the order in which atomic jumps occurred. (a) Initial, defect-
free configuration. The double arrow shows the diametrically opposed Fe3+ ions around an
extrinsic vacancy. (b) Antisite-like defect. A Fe2+ atom (encircled in red in (a) and (b))
moves to the adjacent extrinsic vacancy (jump 1), allowing the green Na+ to jump to the
empty Fe2+ site (jump 2). (c) Since the central diffusion channel is blocked, the green Na+
transfers to an adjacent channel (jump 6), leading to the cascade of jumps 7 – 10. (d) Pink
and green Na+ continue diffusing through the adjacent channel. After the defect in the Fe2+
site is removed (jump 13), one-dimensional diffusion is restablished. Notice that Na+ diffuses
through the extrinsic vacancies in single, long curvilinear jumps (4, 9, and 15).
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Conclusions

In this work we developed and validated a polarizable force field for olivine NaxFePO4. The

new force field outperforms existing alternatives in terms of thermal stability, accuracy, and

applicability to the whole range of sodium compositions (0 < x < 1). In addition, we applied

an enhanced sampling methodology based on a shadow hybrid Monte Carlo technique, RSM-

GSHMC,29 in order to access the dynamics of rare events using shorter simulations and lower

temperatures than those typically required by atomistic simulations on similar systems. The

combination of the new force field and the RSM-GSHMC approach allowed us to study with

unprecedented detail Na-ion diffusion in Na0.66FePO4 at the molecular-level. We confirmed

that the main diffusion mechanism involves single Na-ion hops through the one-dimensional

channels along the [010] crystallographic direction. Furthermore, we identified the novel

Na-ion diffusion dynamics involving the formation and annihiliation of Na+/Fe2+ antisite

defects, which effectively facilitate the migration of Na-ions between adjacent [010] channels.

Na+/Fe2+ antisite defects were expected to block [010] channels and, therefore, hinder Na-ion

mobility in the bulk material. In contrast, our results revealed that such defects can indeed

favor Na-ion exchange between parallel [010] channels. In principle, similar ion migration

mechanisms could operate in other olivine framework compounds as well. Overall, this study

provides an in-depth understanding of Na-ion mobility in olivine NaxFePO4, a promising

alternative to the commercially available LiFePO4 cathode material for Na-ion batteries,

and paves the way to unveil fundamental aspects of ion dynamics in polyanionic materials,

in general.
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Tuning parameters for the simulated annealing algorithm incorporated in potfit, as well as

the fitting errors are listed in section S1. A new methodology for selecting the position of

the shells in the core–shell model is described in section S3. A comparison between gP−P (r)

in the Na0.58FePO4 system obtained with Whiteside-ff and NaxFePO4-ff is shown in section
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