690 research outputs found

    Presence of Spotters Improves Bench Press Performance: A Deception Study.

    Get PDF
    Sheridan, A, Marchant, DC, Williams, EL, Jones, HS, Hewitt, PA, and Sparks, SA. Presence of spotters improves bench press performance: a deception study. J Strength Cond Res XX(X): 000-000, 2017-Resistance exercise is a widely used method of physical training in both recreational exercise and athletic populations. The use of training partners and spotters during resistance exercise is widespread, but little is known about the effect of the presence of these individuals on exercise performance. The purpose of the current study was to investigate the effect of spotter presence on bench press performance. Twelve recreationally trained participants (age, 21.3 ± 0.8 years, height, 1.82 ± 0.1 m, and weight, 84.8 ± 11.1 kg) performed 2 trials of 3 sets to failure at 60% of 1 repetition maximum on separate occasions. The 2 trials consisted of spotters being explicitly present or hidden from view (deception). During the trials, total repetitions (reps), total weight lifted, ratings of perceived exertion (RPE), and self-efficacy were measured. Total reps and weight lifted were significantly greater with spotters (difference = 4.5 reps, t = 5.68, p < 0.001 and difference = 209.6 kg, t = 5.65, p < 0.001, respectively). Although RPE and local RPE were significantly elevated in the deception trials (difference = 0.78, f = 6.16, p = 0.030 and difference = 0.81, f = 5.89, p = 0.034, respectively), self-efficacy was significantly reduced (difference = 1.58, f = 26.90, p < 0.001). This study demonstrates that resistance exercise is improved by the presence of spotters, which is facilitated by reduced RPE and increased self-efficacy. This has important implications for athletes and clients, who should perform resistance exercise in the proximity of others, to maximize total work performed

    Test-retest reliability of a 16.1 km time trial in trained cyclists using the CompuTrainer ergometer

    Get PDF
    Laboratory based cycling time trials (TT) are widely used by both researchers and practitioners, as a method of assessing cycling performance in a controlled environment. Assessments of performance often use TT durations or distances between 20 min and one hour and in the UK the 10 mile (16.1 km) TT is the most frequently used race distance for trained cyclists. The 16.1 km TT has received relatively minimal, but increased attention as a performance criterion in the literature. Therefore, the aim of this study was to assess the reliability of 16.1 km TT performance in a large cohort of trained cyclists using the CompuTrainer cycling ergometer. Trained male cyclists (n = 58, mean±SD age 35±7 yr, height 179±6 cm, weight 79.1±9.4 kg, VO2max. 56.6±6.6 ml.kg.min-1, PPO 365±37 W) performed an initial incremental exercise test to determine PPO and VO2max. The participants then performed two 16.1 km TT on a CompuTrainer cycle ergometer separated by 3-7 days. Differences in time, power output and speed were determined using a Wilcoxon signed ranks or paired t-tests. Reproducibility of the TT performance measures was performed using the coefficient of variation (CV), intraclass correlations, and typical error (TE). There were no differences between any of the performance criteria for the whole cohort (Mean difference = 0.06 min, 0.09 km.h-1, 1.5 W, for time, mean speed and power respectively) between TT1 and TT2. All TT performance data were very reproducible (CV range = 1.1-2.7%) and demonstrated trivial or small TE. The slower cyclists demonstrated marginally lower reliability (CV range = 1.3-3.2%) compared to the fastest group (CV range = 0.7-2.0%). The 16.1 km TT on the CompuTrainer represents a very reliable performance criterion for trained cyclists. Interpretation of test-retest performance outcomes should be performed in the context of the TE of each performance indicator

    Competitor presence reduces internal attentional focus and improves 16.1km cycling time trial performance.

    Get PDF
    Objectives: Whilst the presence of a competitor has been found to improve performance, the mechanisms influencing the change in selected work rates during direct competition have been suggested but not specifically assessed. The aim was to investigate the physiological and psychological influences of a visual avatar competitor during a 16.1-km cycling time trial performance, using trained, competitive cyclists. Design: Randomised cross-over design. Methods: Fifteen male cyclists completed four 16.1 km cycling time trials on a cycle ergometer, performing two with a visual display of themselves as a simulated avatar (FAM and SELF), one with no visual display(DO), and one with themselves and an opponent as simulated avatars (COMP). Participants were informed the competitive avatar was a similar ability cyclist but it was actually a representation of their fastest previous performance. Results: Increased performance times were evident during COMP (27.8 ± 2.0 min) compared to SELF(28.7 ± 1.9 min) and DO (28.4 ± 2.3 min). Greater power output, speed and heart rate were apparent during COMP trial than SELF (p < 0.05) and DO (p ≤ 0.06). There were no differences between SELF and DO.Ratings of perceived exertion were unchanged across all conditions. Internal attentional focus was significantly reduced during COMP trial (p < 0.05), suggesting reduced focused on internal sensations during an increase in performance. Conclusions: Competitive cyclists performed significantly faster during a 16.1-km competitive trial than when performing maximally, without a competitor. The improvement in performance was elicited due to a greater external distraction, deterring perceived exertion

    Improvements in Cycling Time Trial Performance Are Not Sustained Following the Acute Provision of Challenging and Deceptive Feedback

    Get PDF
    The provision of performance-related feedback during exercise is acknowledged as an influential external cue used to inform pacing decisions. The provision of this feedback in a challenging or deceptive context allows research to explore how feedback can be used to improve performance and influence perceptual responses. However, the effects of deception on both acute and residual responses have yet to be explored, despite potential application for performance enhancement. Therefore, this study investigated the effects of challenging and deceptive feedback on perceptual responses and performance in self-paced cycling time trials (TT) and explored whether changes in performance are sustained in a subsequent TT following the disclosure of the deception. Seventeen trained male cyclists were assigned to either an accurate or deceptive feedback group and performed four 16.1 km cycling TTs; 1 and 2) ride-alone baseline TTs where a fastest baseline (FBL) performance was identified, 3) a TT against a virtual avatar representing 102% of their FBL performance (PACER), and 4) a subsequent ride-alone TT (SUB). The deception group, however, were initially informed that the avatar accurately represented their FBL, but prior to SUB were correctly informed of the nature of the avatar. Affect, self-efficacy and RPE were measured every quartile. Both groups performed PACER faster than FBL and SUB (p < 0.05) and experienced lower affect (p = 0.016), lower self-efficacy (p = 0.011), and higher RPE (p < 0.001) in PACER than FBL. No significant differences were found between FBL and SUB for any variable. The presence of the pacer rather than the manipulation of performance beliefs acutely facilitates TT performance and perceptual responses. Revealing that athletes’ performance beliefs were falsely negative due to deceptive feedback provision has no effect on subsequent perceptions or performance. A single experiential exposure may not be sufficient to produce meaningful changes in the performance beliefs of trained individuals beyond the acute setting

    A multiple view polarimetric camera

    Get PDF
    A multiple view polarimetric camera is developed. The system uses four separate action cameras and software is employed to map the images onto each other in order to generate the Stokes vectors, the degree of linear polarisation and angle images. To ensure robustness, an automated calibration system has been developed that ensures the pixels are correctly mapped. Video frame synchronisation is also developed

    X-ray Spectroscopy of Cooling Clusters

    Full text link
    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.Comment: To appear in Physics Reports, 71 pages, 20 figure

    Modelling vehicles acceleration during overtaking manoeuvres

    Full text link
    [EN] Abstract: Overtaking manoeuvre is a key issue for two-lane rural roads. These roads should provide sufficient overtaking sight distance (OSD) at certain locations to allow faster vehicles to pass slower ones. However, overtaking requires occupying the opposing lane, which represents a serious safety concern. Severity of overtaking related crashes is very high, compared with other manoeuvres. The development of advanced driver assistance systems (ADAS) for overtaking is being a complex task. Only few systems have been developed, but are not still in use. This research incorporated accurate data of real manoeuvres to improve the knowledge of the phenomenon. The trajectory of the overtaking vehicles on the left lane was observed. An instrumented vehicle measured the overtaking time and distance, the abreast position, and the initial and final speed of 180 drivers that passed it during a field experiment. Six different kinematic models (such as uniform acceleration or linear variation of acceleration) were calibrated. Generally, drivers started to accelerate before changing to the opposing lane. These models may be applied to ADAS, to estimate OSD and to improve microsimulation models.Part of this research was included in the project 'Desarrollo de modelos de distancias de visibilidad de adelantamiento', with reference code TRA2010-21736 and subsidised by the Spanish Ministery of Economy and Competitivity. The authors also thank Prof Dr Sayed, from University of British Columbia, for his valuable review.Llorca Garcia, C.; Moreno, AT.; García García, A. (2016). Modelling vehicles acceleration during overtaking manoeuvres. IET Intelligent Transport Systems. 10(3):206-215. https://doi.org/10.1049/iet-its.2015.0035S206215103Gray, R., & Regan, D. M. (2005). Perceptual Processes Used by Drivers During Overtaking in a Driving Simulator. Human Factors: The Journal of the Human Factors and Ergonomics Society, 47(2), 394-417. doi:10.1518/0018720054679443Basilio, N., Morice, A. H. P., Marti, G., & Montagne, G. (2015). High- and Low-Order Overtaking-Ability Affordances. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(5), 879-894. doi:10.1177/0018720815583581Morice, A. H. P., Diaz, G. J., Fajen, B. R., Basilio, N., & Montagne, G. (2015). An Affordance-Based Approach to Visually Guided Overtaking. Ecological Psychology, 27(1), 1-25. doi:10.1080/10407413.2015.991641Farah, H., Bekhor, S., & Polus, A. (2009). Risk evaluation by modeling of passing behavior on two-lane rural highways. Accident Analysis & Prevention, 41(4), 887-894. doi:10.1016/j.aap.2009.05.006Hassan, Y., Easa, S. M., & El Halim, A. O. A. (1996). Passing sight distance on two-lane highways: Review and revision. Transportation Research Part A: Policy and Practice, 30(6), 453-467. doi:10.1016/0965-8564(95)00032-1Wang, Y., & Cartmell, M. P. (1998). New Model for Passing Sight Distance on Two-Lane Highways. Journal of Transportation Engineering, 124(6), 536-545. doi:10.1061/(asce)0733-947x(1998)124:6(536)Sparks, G. A., Neudorf, R. D., Robinson, J. B. L., & Good, D. (1993). Effect of Vehicle Length on Passing Operations. Journal of Transportation Engineering, 119(2), 272-283. doi:10.1061/(asce)0733-947x(1993)119:2(272)Hanley, P. F., & Forkenbrock, D. J. (2005). Safety of passing longer combination vehicles on two-lane highways. Transportation Research Part A: Policy and Practice, 39(1), 1-15. doi:10.1016/j.tra.2004.09.001Khoury, J. E., & Hobeika, A. G. (2012). Integrated Stochastic Approach for Risk and Service Estimation: Passing Sight Distance Application. Journal of Transportation Engineering, 138(5), 571-579. doi:10.1061/(asce)te.1943-5436.0000366Jenkins, J. M., & Rilett, L. R. (2004). Application of Distributed Traffic Simulation for Passing Behavior Study. Transportation Research Record: Journal of the Transportation Research Board, 1899(1), 11-18. doi:10.3141/1899-02Rakha, H., Ahn, K., & Trani, A. (2004). Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions. Transportation Research Part D: Transport and Environment, 9(1), 49-74. doi:10.1016/s1361-9209(03)00054-3Polus, A., Livneh, M., & Frischer, B. (2000). Evaluation of the Passing Process on Two-Lane Rural Highways. Transportation Research Record: Journal of the Transportation Research Board, 1701(1), 53-60. doi:10.3141/1701-07Harwood, D. W., Gilmore, D. K., & Richard, K. R. (2010). Criteria for Passing Sight Distance for Roadway Design and Marking. Transportation Research Record: Journal of the Transportation Research Board, 2195(1), 36-46. doi:10.3141/2195-05Hegeman, G., Tapani, A., & Hoogendoorn, S. (2009). Overtaking assistant assessment using traffic simulation. Transportation Research Part C: Emerging Technologies, 17(6), 617-630. doi:10.1016/j.trc.2009.04.010Milanés, V., Llorca, D. F., Villagrá, J., Pérez, J., Fernández, C., Parra, I., … Sotelo, M. A. (2012). Intelligent automatic overtaking system using vision for vehicle detection. Expert Systems with Applications, 39(3), 3362-3373. doi:10.1016/j.eswa.2011.09.024Isermann, R., Mannale, R., & Schmitt, K. (2012). Collision-avoidance systems PRORETA: Situation analysis and intervention control. Control Engineering Practice, 20(11), 1236-1246. doi:10.1016/j.conengprac.2012.06.003Petrov, P., & Nashashibi, F. (2014). Modeling and Nonlinear Adaptive Control for Autonomous Vehicle Overtaking. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1643-1656. doi:10.1109/tits.2014.2303995Llorca, C., & García, A. (2011). Evaluation of Passing Process on Two-Lane Rural Highways in Spain with New Methodology Based on Video Data. Transportation Research Record: Journal of the Transportation Research Board, 2262(1), 42-51. doi:10.3141/2262-05Llorca, C., Moreno, A. T., García, A., & Pérez-Zuriaga, A. M. (2013). Daytime and Nighttime Passing Maneuvers on a Two-Lane Rural Road in Spain. Transportation Research Record: Journal of the Transportation Research Board, 2358(1), 3-11. doi:10.3141/2358-01Llorca, C., Moreno, A. T., Pérez-Zuriaga, A. M., & García, A. (2013). Influence of age, gender and delay on overtaking dynamics. IET Intelligent Transport Systems, 7(2), 174-181. doi:10.1049/iet-its.2012.0147Khoury, J. E., & Hobeika, A. (2007). Incorporating Uncertainty into the Estimation of the Passing Sight Distance Requirements. Computer-Aided Civil and Infrastructure Engineering, 22(5), 347-357. doi:10.1111/j.1467-8667.2007.00491.xRakha, H., Snare, M., & Dion, F. (2004). Vehicle Dynamics Model for Estimating Maximum Light-Duty Vehicle Acceleration Levels. Transportation Research Record: Journal of the Transportation Research Board, 1883(1), 40-49. doi:10.3141/1883-05Fitzpatrick, K., Chrysler, S. T., & Brewer, M. (2012). Deceleration Lengths for Exit Terminals. Journal of Transportation Engineering, 138(6), 768-775. doi:10.1061/(asce)te.1943-5436.000038

    Investigation of in vitro effects of ethephon and chlorpyrifos, either alone or in combination, on rat intestinal muscle contraction

    Get PDF
    A range of pesticides is widely used in pest management and the chances of exposure to multiple organophosphorus (OP) compounds simultaneously are high, especially from dietary and other sources. Although health hazards of individual OP insecticides have been relatively well characterized, there is lesser information on the interactive toxicity of multiple OP insecticides. The aim of this study is to elicit the possible interactions in case combined exposure of an OP pesticide chlorpyrifos (CPF) and a plant growth regulator ethephon (ETF) which are used worldwide. The ileum segments of 3 months old Wistar Albino male rats were used in isolated organ bath containing Tyrode solution. ETF and CPF were incubated (10−7 M concentration) separately or in combination with each other to ileum and their effects on acetylcholine-induced contractions were studied. The data obtained from this study show that, single and combined exposure to the agents caused agonistic interactions with regard to potency of ACh whereas they caused a decrease on Emax value of ACh. These findings suggest that exposure to these agents which have direct and indirect cholinergic effects, may cause developing clinical responses with small doses and earlier but the extent of toxicity will be lower

    Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus

    Get PDF
    A major challenge in computational neurobiology is to understand how populations of noisy, broadly-tuned neurons produce accurate goal-directed actions such as saccades. Saccades are high-velocity eye movements that have stereotyped, nonlinear kinematics; their duration increases with amplitude, while peak eye-velocity saturates for large saccades. Recent theories suggest that these characteristics reflect a deliberate strategy that optimizes a speed-accuracy tradeoff in the presence of signal-dependent noise in the neural control signals. Here we argue that the midbrain superior colliculus (SC), a key sensorimotor interface that contains a topographically-organized map of saccade vectors, is in an ideal position to implement such an optimization principle. Most models attribute the nonlinear saccade kinematics to saturation in the brainstem pulse generator downstream from the SC. However, there is little data to support this assumption. We now present new neurophysiological evidence for an alternative scheme, which proposes that these properties reside in the spatial-temporal dynamics of SC activity. As predicted by this scheme, we found a remarkably systematic organization in the burst properties of saccade-related neurons along the rostral-to-caudal (i.e., amplitude-coding) dimension of the SC motor map: peak firing-rates systematically decrease for cells encoding larger saccades, while burst durations and skewness increase, suggesting that this spatial gradient underlies the increase in duration and skewness of the eye velocity profiles with amplitude. We also show that all neurons in the recruited population synchronize their burst profiles, indicating that the burst-timing of each cell is determined by the planned saccade vector in which it participates, rather than by its anatomical location. Together with the observation that saccade-related SC cells indeed show signal-dependent noise, this precisely tuned organization of SC burst activity strongly supports the notion of an optimal motor-control principle embedded in the SC motor map as it fully accounts for the straight trajectories and kinematic nonlinearity of saccades
    • …
    corecore