77 research outputs found

    Preliminary results on the Multipactor effect prediction in RF components with ferrites

    Full text link
    This paper deals with the analysis of the Multipactor effect in RF components with ferrites performed through the preliminary measurements of ferrites secondary emission coefficient and the simulations of the effect of a continuous magnetic field on the electron bunch spread. The impact of this effect on the Multipactor threshold was quantified. \ua9 2013 IEEE

    Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.The authors would like to thank the European High Power Space Materials Laboratory for its contribution-a laboratory funded by the European Regional Development Fund-a way of making Europe. Many thanks to the University of Valencia (Spain) for supporting this research activity with the internal program "Assistance for temporary stays of invited researchers within the framework of the Subprogramme Attraction of Talent 2015".Bañón, D.; Socuellamos, JM.; Mata-Sanz, R.; Mercadé-Morales, L.; Gimeno Martínez, B.; Boria Esbert, VE.; Raboso García-Baquero, D.... (2018). Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models. IEEE Transactions on Plasma Science. 46(4):859-867. https://doi.org/10.1109/TPS.2018.2809602S85986746

    Weak Segregation Theory and Non-Conventional Morphologies in the Ternary ABC Triblock Copolymers

    Full text link
    The Leibler weak segregation theory in molten diblock copolymers is generalized with due regard for the 2nd shell harmonics contributions defined in the paper and the phase diagrams are built for the linear and miktoarm ternary ABC triblock copolymers. The symmetric linear copolymers with the middle block non-selective with respect to the side ones are shown to undergo the continuous ODT not only into the lamellar phase but also into various non-conventional cubic phases (depending on the middle block composition it could be the simple cubic, face-centered cubic or non-centrosymmetric phase revealing the symmetry of space group No.214 first predicted to appear in molten block copolymers). For asymmetric linear ABC copolymers a region of compositions is found where the weakly segregated gyroid (double gyroid) phase exists between the planar hexagonal and lamellar or one of the non-conventional cubic phases up to the very critical point. In contrast, the miktoarm ABC block copolymers with one of its arm non-selective with respect to the two others are shown to reveal a pronounced tendency towards strong segregation, which is preceded by increase of stability of the conventional BCC phase and a peculiar weakly segregated BCC phase (BCC3), where the dominant harmonics belong to the 3rd co-ordination sphere of the reciprocal lattice. The validity region of the developed theory is discussed and outlined in the composition triangles both for linear and miktoarm copolymers.Comment: 61 pages, 12 figure

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    The Physics of the B Factories

    Get PDF

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Multidimensional Exact Solutions of a Class of Elliptic Systems

    No full text
    In plasma modeling, partial differential equations and equation systems are usually applied, such as Boltzmann or Vlasov equations. Their solutions must meet initial and boundary conditions which presents a stubborn problem. Thus, the task is commonly reduced to a simpler one, e.g., to solving ordinary differential equations. This is the basis for model of magnetic electron isolation in vacuum diode proposed by a group of French mathematicians. The model is described by a system of two nonlinear ordinary second-order differential equations, and the problem of finding all exact solutions, i.e. full integration is concerned. In this paper, the whole concept is further developed into a class of elliptic equation systems with multidimensional Laplace operator, including both generalization of the above vacuum diode model and other systems applied in chemical technology, mathematical biology, etc. It is established that only solutions of Helmholtz linear equation can be solutions of the elliptic systems considered, and the properties of the former solutions can be inherited by the latter ones. Method of finding radially symmetric exact solutions is offered. A series of example control systems are observed, for which parametrical families of exact solutions (including those anisotropic by spatial variables) described by elementary or harmonious functions are found. Examples of global solutions defined on entire space are specified. The explicit expressions of exact solutions obtained have both theoretical and applied value as they can be used for testing, development and adaptation of numerical methods and algorithms of finding approximate solutions for boundary problems within the generalized model of magnetic isolation
    corecore