797 research outputs found

    Role of healthy-looking banana and alternate hosts in the spread of banana bunchy top disease

    Get PDF
    Poster presented at Symposium of the Pest Management Council of the Philippines. 200

    Flower induction and development in saffron: Timing and hormone signalling pathways

    Full text link
    [EN] The demand for saffron is expected to rise in the coming years due to its nutraceutical and medicinal properties. To cope with this, it will be necessary to develop a mechanised production of saffron. Upgrading the production methods requires accurate control of the flowering time in this species. Nevertheless, little is known about the control of flowering time in Crocus sativus L. The aim of this study is to gain insight into the floral induction regulatory networks operating in this species. A transcriptomic analysis was performed from saffron main buds in different stages of development. The identification of putative integrators of flowering time signals, like FT, as well as meristem identity genes, such as LFY and TFL1, permitted the definition of the time of flowering induction of the buds, being able to use them as molecular markers. The identification of the transcripts encoded by a DROOPING LEAF-like (DL) gene is of particular relevance because this gene might be a novel factor for carpel specification in saffron. To elucidate the hormonal signalling networks working during flower induction, transcriptomic data were used, and the content of IAA, ABA and gibberellins was determined in competent and non-competent buds to flower, during the saffron life cycle. Our results suggested that ABA might be negatively regulating corm dormancy release, but its involvement in flower induction cannot be ruled out. ABI5 and the mediator of ABA regulated dormancy gene MARD1, could be key players of this pathway. In addition, a drop in GA4 levels may also be a necessary, but insufficient, condition for floral induction and development. DELLA, TFL1 and PIF3 genes might be involved in the gibberellin pathway. Notably, IAA seems to be a positive regulator of the process, involving MP/ARF5 and ANT genes in the pathway. Taken together, these results pave the way to the unveiling of the regulatory networks controlling the vegetative-to-reproductive phase change in saffron.The activities of this study have been supported by a project funded by the "Ministerio de Ciencia, Innovacion y Universidades de Espana" [AGL2016-77078-R].Renau-Morata, B.; Nebauer, SG.; García-Carpintero, V.; Cañizares Sales, J.; Minguet, E.; De Los Mozos, M.; Molina Romero, RV. (2021). Flower induction and development in saffron: Timing and hormone signalling pathways. Industrial Crops and Products. 164:1-19. https://doi.org/10.1016/j.indcrop.2021.113370S11916

    Integrative Transcriptomic and Metabolomic Analysis at Organ Scale Reveals Gene Modules Involved in the Responses to Suboptimal Nitrogen Supply in Tomato

    Get PDF
    [EN] The development of high nitrogen use efficiency (NUE) cultivars under low N inputs is required for sustainable agriculture. To this end, in this study, we analyzed the impact of long-term suboptimal N conditions on the metabolome and transcriptome of tomato to identify specific molecular processes and regulators at the organ scale. Physiological and metabolic analysis revealed specific responses to maintain glutamate, asparagine, and sucrose synthesis in leaves for partition to sustain growth, while assimilated C surplus is stored in the roots. The transcriptomic analyses allowed us to identify root and leaf sets of genes whose expression depends on N availability. GO analyses of the identified genes revealed conserved biological functions involved in C and N metabolism and remobilization as well as other specifics such as the mitochondrial alternative respiration and chloroplastic cyclic electron flux. In addition, integrative analyses uncovered N regulated genes in root and leaf clusters, which are positively correlated with changes in the levels of different metabolites such as organic acids, amino acids, and formate. Interestingly, we identified transcription factors with high identity to TGA4, ARF8, HAT22, NF-YA5, and NLP9, which play key roles in N responses in Arabidopsis. Together, this study provides a set of nitrogen-responsive genes in tomato and new putative targets for tomato NUE and fruit quality improvement under limited N supply.This study was supported by grants from The National Institute for Agriculture and Food Research and Technology (CSIC-INIA) (RTA2015-00014-c02-00 to JMA and RTA2015-00014-c02-01 to SGN) and the Community of Madrid (AGRISOST-CM S2018/BAA-4330 to JMA). We also want to acknowledge the "Severo Ochoa Program for Centers of Excellence in R&D" from the Agencia Estatal de Investigacion of Spain (Grant SEV-2016-0672) for supporting the scientific services used in this study. J. Canales was supported by the Agencia Nacional de Investigacion y Desarrollo de Chile (ANID, FONDECYT 1190812) and ANID-Millennium Science Initiative Program (ICN17-022).Renau-Morata, B.; Molina Romero, RV.; Minguet, E.; Cebolla Cornejo, J.; Carrillo, L.; Martí-Renau, R.; García-Carpintero, V.... (2021). Integrative Transcriptomic and Metabolomic Analysis at Organ Scale Reveals Gene Modules Involved in the Responses to Suboptimal Nitrogen Supply in Tomato. Agronomy. 11(7):1-26. https://doi.org/10.3390/agronomy11071320S12611

    A catalogue of some Musa ITC reference collections grown in the Philippines

    Get PDF
    The catalogue includes 25 ITC Musa accessions from different subgroups characterized using the minimum set of morphological descriptors and photos. Supplemental information on the disease reaction of the accessions against Fusarium Wilt (Foc TR4) and Banana Bunchy Top Virus were also included. The completion of this catalogue was made possible by Bioversity International for developing and implementing the project entitled “Assessment of Musa Genetic Resources for their Host Reaction to Fusarium oxysporim f.sp. Cubense Tropical Race 4 (Foc TR4), towards Understanding the Genetic Base of Host- Pathogen Interactions” through funding from the CGIAR Program for Roots,Tubers and Bananas (RTB). Contributions were made by the University of Philippines Los Banos, Lapanday Food Corporation and the Bureau of Plant Industry, all based in the Philippines

    Electron transport across a quantum wire in the presence of electron leakage to a substrate

    Full text link
    We investigate electron transport through a mono-atomic wire which is tunnel coupled to two electrodes and also to the underlying substrate. The setup is modeled by a tight-binding Hamiltonian and can be realized with a scanning tunnel microscope (STM). The transmission of the wire is obtained from the corresponding Green's function. If the wire is scanned by the contacting STM tip, the conductance as a function of the tip position exhibits oscillations which may change significantly upon increasing the number of wire atoms. Our numerical studies reveal that the conductance depends strongly on whether or not the substrate electrons are localized. As a further ubiquitous feature, we observe the formation of charge oscillations.Comment: 7 pages, 7 figure

    ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization

    Get PDF
    This chapter presents ParadisEO-MOEO, a white-box object-oriented software framework dedicated to the flexible design of metaheuristics for multi-objective optimization. This paradigm-free software proposes a unified view for major evolutionary multi-objective metaheuristics. It embeds some features and techniques for multi-objective resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the problems they are intended to solve. This separation confers a maximum design and code reuse. This general-purpose framework provides a broad range of fitness assignment strategies, the most common diversity preservation mechanisms, some elitistrelated features as well as statistical tools. Furthermore, a number of state-of-the-art search methods, including NSGA-II, SPEA2 and IBEA, have been implemented in a user-friendly way, based on the fine-grained ParadisEO-MOEO components

    Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization

    Get PDF
    A great demand for prebiotics is driving the search for new sources of fructo-oligosaccharides (FOS) producers and for FOS with differentiated functionalities. In the present work, FOS production by a new isolated strain of Aspergillus ibericus was evaluated. The temperature of fermentation and initial pH were optimized in shaken flask to yield a maximal FOS production, through a central composite experimental design. FOS were produced in a one-step bioprocess using the whole cells of the microorganism. The model (R2 = 0.918) predicted a yield of 0.56, experimentally 0.53 ± 0.03 gFOS.ginitial sucrose1 was obtained (37.0 °C and a pH of 6.2). A yield of 0.64 ± 0.02 gFOS.ginitial sucrose1 was obtained in the bioreactor, at 38 h, with a content of 118 ± 4 g.L1 in FOS and a purity of 56 ± 3%. The chemical structure of the FOS produced by A. ibericus was determined by HPLC and NMR. FOS were identified as 1-kestose, nystose, and 1F-fructofuranosylnystose. In conclusion, A. ibericus was found to be a good alternative FOS producer.Clarisse Nobre acknowledges the Portuguese Foundation forScience and Technology (FCT) for her Post-Doc Grant [ref. SFRH/BPD/87498/ 2012] and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124FEDER-027462), the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation(NORTE-01-0145-FEDER-000004) and the project MultiBiorefinery (POCI-01-0145-FEDER-016403) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature

    Get PDF
    Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.Austrian Science Fund (FWF) DOC 31-B26Medical University GrazUniversita Cattolica del Sacro CuorePRIN 2017 program of Italian Ministry of Research and University (MIUR) 2017RSAFK7Ministry of Health, Italy GR-2018-12366992Slovenian Research Agency - Slovenia P3-0108MRIC UL IP-0510Plan Estatal de Investigacion Cientifica y Tecnica y de InnovacionISCIII Subdireccion General de Evaluacion y Fomento de la InvestigacionMinisterio de Economia y Competitividad, Spain PI16/01642European Union (EU)European Community (EC)German Research Foundation (DFG) GE-2223/2-

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
    corecore