939 research outputs found

    Monitoring and Pay: An Experiment on Employee Performance under Endogenous Supervision

    Get PDF
    We present an experimental test of a shirking model where monitoring intensity is endogenous and effort a continuous variable. Wage level, monitoring intensity and consequently the desired enforceable effort level are jointly determined by the maximization problem of the firm. As a result, monitoring and pay should be complements. In our experiment, between and within treatment variation is qualitatively in line with the normative predictions of the model under standard assumptions. Yet, we also find evidence for reciprocal behavior. Our data analysis shows, however, that it does not pay for the employer to solely rely on the reciprocity of employees

    Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere

    Get PDF
    International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215–100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS “version 2.2” processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations

    The non-evolving internal structure of early-type galaxies: the case study SDSS J0728+3835 at z = 0.206

    Get PDF
    We study the internal dynamical structure of the early-type lens galaxy SDSS J0728+3835 at z = 0.206. The analysis is based on two-dimensional kinematic maps extending out to 1.7 effective radii obtained from Keck spectroscopy, on lensing geometry and on stellar mass estimates obtained from multiband Hubble Space Telescope imaging. The data are modelled under the assumptions of axial symmetry supported by a two-integral distribution function (DF), by applying the combined gravitational lensing and stellar dynamics code CAULDRON, and yielding high-quality constraints for an early-type galaxy at cosmological redshifts. Modelling the total density profile as a power-law of the form rho_tot ~ 1/r^{gamma}, we find that it is nearly isothermal (logarithmic slope gamma = 2.08^{+0.04}_{-0.02}), and quite flattened (axial ratio q = 0.60^{+0.08}_{-0.03}). The galaxy is mildly anisotropic (delta = 0.08 +/- 0.02) and shows a fair amount of rotational support, in particular towards the outer regions. We determine a dark matter fraction lower limit of 28 per cent within the effective radius. The stellar contribution to the total mass distribution is close to maximal for a Chabrier initial mass function (IMF), whereas for a Salpeter IMF the stellar mass exceeds the total mass within the galaxy inner regions. We find that the combination of a NFW dark matter halo with the maximally rescaled luminous profile provides a remarkably good fit to the total mass distribution over a broad radial range. Our results confirm and expand the findings of the SLACS survey for early-type galaxies of comparable velocity dispersion (sigma_SDSS = 214 +/- 11 km/s). The internal structure of J0728 is consistent with that of local early-type galaxies of comparable velocity dispersion as measured by the SAURON project, suggesting lack of evolution in the past two billion years.Comment: 13 pages, 10 figures. MNRAS in press. Revised to match accepted versio

    Instances and connectors : issues for a second generation process language

    Get PDF
    This work is supported by UK EPSRC grants GR/L34433 and GR/L32699Over the past decade a variety of process languages have been defined, used and evaluated. It is now possible to consider second generation languages based on this experience. Rather than develop a second generation wish list this position paper explores two issues: instances and connectors. Instances relate to the relationship between a process model as a description and the, possibly multiple, enacting instances which are created from it. Connectors refers to the issue of concurrency control and achieving a higher level of abstraction in how parts of a model interact. We believe that these issues are key to developing systems which can effectively support business processes, and that they have not received sufficient attention within the process modelling community. Through exploring these issues we also illustrate our approach to designing a second generation process language.Postprin

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc

    X-ray Spectral Survey with XMM--Newton of a Complete Sample of Nearby Seyfert Galaxies

    Full text link
    Results obtained from an X-ray spectral survey of nearby Seyfert galaxies using XMM--Newton are reported. The sample was optically selected, well defined, complete in B mag, and distance limited: it consists of the nearest (D<22 Mpc) 27 Seyfert galaxies (9 of type 1, 18 of type 2) taken from the Ho et al. (1997) sample. This is one of the largest atlases of hard X-ray spectra of low-L active galaxies ever assembled. All nuclear sources except two Sey 2s are detected between 2-10 keV, half for the first time ever, and average spectra are obtained for all of them. Nuclear luminosities reach values down to 10**38 erg/s. The shape of the distribution of X-ray parameters is affected by the presence of Compton-thick objects (> 30% among type 2s). The latter have been identified either directly from their intense FeK line and flat X-ray spectra, or indirectly with flux diagnostic diagrams which use isotropic indicators. After taking into account these highly absorbed sources, we find that (i) the intrinsic X-ray spectral properties (i.e., spectral shapes and luminosities above 2 keV) are consistent between type 1 and type 2 Sey, as expected from ``unified models'', (ii) Sey galaxies as a whole are distributed fairly continuously over the entire range of Nh, between 10**20 and 10**25 cm**-2, and (iii) while Sey 1s tend to have lower Nh and Sey 2s tend to have the highest, we find 30% and 10% exceptions, respectively. Overall the sample well represents the average intrinsic X-ray spectral properties of nearby AGN, including a proper estimate of the distribution of their absorbing columns. Finally, we conclude that, with the exception of a few cases, the present study agrees with predictions of unified models of Sey galaxies, and extends their validity down to very low luminosities.Comment: 23 pages, 4 tables, 4 figures, 2 Appendices with 27 source spectra and notes, to be published in the Astronomy & Astrophysics Journa

    Two-dimensional kinematics of SLACS lenses: III. Mass structure and dynamics of early-type lens galaxies beyond z ~ 0.1

    Get PDF
    We combine in a self-consistent way the constraints from both gravitational lensing and stellar kinematics to perform a detailed investigation of the internal mass distribution, amount of dark matter, and dynamical structure of the 16 early-type lens galaxies from the SLACS Survey, at z = 0.08 - 0.33, for which both HST/ACS and NICMOS high-resolution imaging and VLT VIMOS IFU spectroscopy are available. Based on this data set, we analyze the inner regions of the galaxies, i.e. typically within one (3D) effective radius r_e, under the assumption of axial symmetry and by constructing dynamical models supported by two-integral stellar DFs. For all systems, the total mass density distribution is found to be well approximated by a simple power-law: this profile is on average slightly super-isothermal, with a logarithmic slope = 2.074^{+0.043}_{-0.041} (68% CL) and an intrinsic scatter 0.144^{+0.055}_{-0.014}, and is fairly round, with an average axial ratio = 0.77+/-0.04. The lower limit for the dark matter fraction (fDM) inside r_e ranges, in individual systems, from nearly zero to almost a half, with a median value of 12%. By including stellar masses derived from SPS models with a Salpeter IMF, we obtain an average fDM = 31%. The fDM rises to 61% if, instead, a Chabrier IMF is assumed. For both IMFs, the dark matter fraction increases with the total mass of the galaxy (3-sigma correlation). Based on the intrinsic angular momentum parameter calculated from our models, we find that the galaxies can be divided into two dynamically distinct groups, which are shown to correspond to the usual classes of the slow and fast rotators. Overall, the SLACS systems are structurally and dynamically very similar to their nearby counterparts, indicating that the inner regions of early-type galaxies have undergone little, if any, evolution since redshift z ~ 0.35. (Abridged)Comment: 27 pages, 34 figures. MNRAS, in pres

    The chemical enrichment of the ICM from hydrodynamical simulations

    Get PDF
    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 18; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Imagination, Hope and the Migrant Journey : Iraqi Asylum Seekers Looking for a Future in Europe

    Get PDF
    Europe received an unprecedented number of asylum seekers in 2015. This article examines Iraqi asylum seekers who journeyed through Europe in search of an idealized version of Finland, which they had imagined based on word-of-mouth and social media information. Through cognitive migration, the act of pre-experiencing futures in different locations, Finland was seen to offer both subjective hope of personal growth and advancement and objective hope of safety and physical security. This hope motivated them to embark on a journey of 6,000 kilometers to the European North. Based on interview data and relevant studies, the article concludes that hope of a better, imagined future abroad acts as a powerful magnet for persons with poor prospects in their countries of origin. Hope is a kind of critical emotion strongly shaped by beliefs and real-time opportunities; and as such, beliefs are notoriously difficult to change. Imagination, therefore, should not be overlooked when planning and implementing migration policies.Europe received an unprecedented number of asylum seekers in 2015. This article examines Iraqi asylum seekers who journeyed through Europe in search of an idealized version of Finland, which they had imagined based on word-of-mouth and social media information. Through cognitive migration, the act of pre-experiencing futures in different locations, Finland was seen to offer both subjective hope of personal growth and advancement and objective hope of safety and physical security. This hope motivated them to embark on a journey of 6,000 kilometers to the European North. Based on interview data and relevant studies, the article concludes that hope of a better, imagined future abroad acts as a powerful magnet for persons with poor prospects in their countries of origin. Hope is a kind of critical emotion strongly shaped by beliefs and real-time opportunities; and as such, beliefs are notoriously difficult to change. Imagination, therefore, should not be overlooked when planning and implementing migration policies.Peer reviewe

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres
    corecore