4,024 research outputs found

    Peculiarities of polyneuropathy in the peripheral t-cell lymphoma with cytostatics

    Get PDF
    This paper presents data on the occurrence and form of polyneuropathy in the peripheral T-cell lymphoma, and its main pathogenesis elements. Here the toxic effects of cytotoxic drugs and their role in the impairment of the nervous system have been describe

    Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNT−Fe/Co−MgO System

    Get PDF
    Mg0.90FexCoyO (x + y ) 0.1) solid solutions were synthesized by the ureic combustion route. Upon reduction at 1000 °C in H2-CH4 of these powders, Fe/Co alloy nanoparticles are formed, which are involved in the formation of carbon nanotubes, which are mostly single and double walled, with an average diameter close to 2.5 nm. Characterizations of the materials are performed using 57Fe Mo¨ssbauer spectroscopy and electron microscopy, and a well-established macroscopic method, based on specific-surface-area measurements, was applied to quantify the carbon quality and the nanotubes quantity. A detailed investigation of the Fe/Co alloys’ formation and composition is reported. An increasing fraction of Co2+ ions hinders the dissolution of iron in the MgO lattice and favors the formation of MgFe2O4-like particles in the oxide powders. Upon reduction, these particles form R-Fe/Co particles with a size and composition (close to Fe0.50Co0.50) adequate for the increased production of carbon nanotubes. However, larger particles are also produced resulting in the formation of undesirable carbon species. The highest CNT quantity and carbon quality are eventually obtained upon reduction of the iron-free Mg0.90Co0.10O solid solution, in the absence of clusters of metal ions in the starting material. Introduction Catalyti

    Zero modes, beta functions and IR/UV interplay in higher-loop QED

    Get PDF
    We analyze the relation between the short-distance behavior of quantum field theory and the strong-field limit of the background field formalism, for QED effective Lagrangians in self-dual backgrounds, at both one and two loop. The self-duality of the background leads to zero modes in the case of spinor QED, and these zero modes must be taken into account before comparing the perturbative beta function coefficients and the coefficients of the strong-field limit of the effective Lagrangian. At one-loop this is familiar from instanton physics, but we find that at two-loop the role of the zero modes, and the interplay between IR and UV effects in the renormalization, is quite different. Our analysis is motivated in part by the remarkable simplicity of the two-loop QED effective Lagrangians for a self-dual constant background, and we also present here a new independent derivation of these two-loop results.Comment: 15 pages, revtex

    Three-loop critical exponents, amplitude functions, and amplitude ratios from variational perturbation theory

    Full text link
    We use variational perturbation theory to calculate various universal amplitude ratios above and below T_c in minimally subtracted phi^4-theory with N components in three dimensions. In order to best exhibit the method as a powerful alternative to Borel resummation techniques, we consider only to two- and three-loops expressions where our results are analytic expressions. For the critical exponents, we also extend existing analytic expressions for two loops to three loops.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/kleiner_re318/preprint.htm

    Thermodynamic characteristics of the classical n-vector magnetic model in three dimensions

    Full text link
    The method of calculating the free energy and thermodynamic characteristics of the classical n-vector three-dimensional (3D) magnetic model at the microscopic level without any adjustable parameters is proposed. Mathematical description is perfomed using the collective variables (CV) method in the framework of the ρ4\rho^4 model approximation. The exponentially decreasing function of the distance between the particles situated at the N sites of a simple cubic lattice is used as the interaction potential. Explicit and rigorous analytical expressions for entropy,internal energy, specific heat near the phase transition point as functions of the temperature are obtained. The dependence of the amplitudes of the thermodynamic characteristics of the system for T>TcT>T_c and T<TcT<T_c on the microscopic parameters of the interaction potential are studied for the cases n=1,2,3n=1,2,3 and nn\to\infty. The obtained results provide the basis for accurate analysis of the critical behaviour in three dimensions including the nonuniversal characteristics of the system.Comment: 25 pages, 5 figure

    Disorder-Induced Critical Phenomena in Hysteresis: Numerical Scaling in Three and Higher Dimensions

    Full text link
    We present numerical simulations of avalanches and critical phenomena associated with hysteresis loops, modeled using the zero-temperature random-field Ising model. We study the transition between smooth hysteresis loops and loops with a sharp jump in the magnetization, as the disorder in our model is decreased. In a large region near the critical point, we find scaling and critical phenomena, which are well described by the results of an epsilon expansion about six dimensions. We present the results of simulations in 3, 4, and 5 dimensions, with systems with up to a billion spins (1000^3).Comment: Condensed and updated version of cond-mat/9609072,``Disorder-Induced Critical Phenomena in Hysteresis: A Numerical Scaling Analysis'

    Critical Exponents of the N-vector model

    Full text link
    Recently the series for two RG functions (corresponding to the anomalous dimensions of the fields phi and phi^2) of the 3D phi^4 field theory have been extended to next order (seven loops) by Murray and Nickel. We examine here the influence of these additional terms on the estimates of critical exponents of the N-vector model, using some new ideas in the context of the Borel summation techniques. The estimates have slightly changed, but remain within errors of the previous evaluation. Exponents like eta (related to the field anomalous dimension), which were poorly determined in the previous evaluation of Le Guillou--Zinn-Justin, have seen their apparent errors significantly decrease. More importantly, perhaps, summation errors are better determined. The change in exponents affects the recently determined ratios of amplitudes and we report the corresponding new values. Finally, because an error has been discovered in the last order of the published epsilon=4-d expansions (order epsilon^5), we have also reanalyzed the determination of exponents from the epsilon-expansion. The conclusion is that the general agreement between epsilon-expansion and 3D series has improved with respect to Le Guillou--Zinn-Justin.Comment: TeX Files, 27 pages +2 figures; Some values are changed; references update

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    corecore