1,428 research outputs found

    Mass spectrometers and atomic oxygen

    Get PDF
    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized

    Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei

    Get PDF
    Multifragmentation properties measured with INDRA are studied for single sources produced in Xe+Sn reactions in the incident energy range 32-50 A MeV and quasiprojectiles from Au+Au collisions at 80 A MeV. A comparison for both types of sources is presented concerning Fisher scaling, Zipf law, fragment size and fluctuation observables. A Fisher scaling is observed for all the data. The pseudo-critical energies extracted from the Fisher scaling are consistent between Xe+Sn central collisions and Au quasi-projectiles. In the latter case it also corresponds to the energy region at which fluctuations are maximal. The critical energies deduced from the Zipf analysis are higher than those from the Fisher analysis.Comment: 30 pages, accepted for publication in Nuclear Physics A, references correcte

    Pion radii in nonlocal chiral quark model

    Full text link
    The electromagnetic radius of the charged pion and the transition radius of the neutral pion are calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the contributions of vector mesons to the pion radii are noticeably suppressed in comparison with a similar contribution in the local Nambu--Jona-Lasinio model. The form-factor for the process gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in satisfactory agreement with experimental data.Comment: 7 pages, 7 figure

    Multiplicity correlations of intermediate-mass fragments with pions and fast protons in 12C + 197Au

    Full text link
    Low-energy pi+ (E < 35 MeV) from 12C+197Au collisions at incident energies from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl) calibration telescopes of the INDRA multidetector. The inclusive angular distributions are approximately isotropic, consistent with multiple rescattering in the target spectator. The multiplicity correlations of the low-energy pions and of energetic protons (E > 150 MeV) with intermediate-mass fragments were determined from the measured coincidence data. The deduced correlation functions 1 + R \approx 1.3 for inclusive event samples reflect the strong correlations evident from the common impact-parameter dependence of the considered multiplicities. For narrow impact-parameter bins (based on charged-particle multiplicity), the correlation functions are close to unity and do not indicate strong additional correlations. Only for pions at high particle multiplicities (central collisions) a weak anticorrelation is observed, probably due to a limited competition between these emissions. Overall, the results are consistent with the equilibrium assumption made in statistical multifragmentation scenarios. Predictions obtained with intranuclear cascade models coupled to the Statistical Multifragmentation Model are in good agreement with the experimental data.Comment: 9 pages, 11 figures, subm. to EPJ

    Bimodality: a possible experimental signature of the liquid-gas phase transition of nuclear matter

    Full text link
    We have observed a bimodal behaviour of the distribution of the asymmetry between the charges of the two heaviest products resulting from the decay of the quasi-projectile released in binary Xe+Sn and Au+Au collisions from 60 to 100 MeV/u. Event sorting has been achieved through the transverse energy of light charged particles emitted on the quasi-target side, thus avoiding artificial correlations between the bimodality signal and the sorting variable. Bimodality is observed for intermediate impact parameters for which the quasi-projectile is identified. A simulation shows that the deexcitation step rather than the geometry of the collision appears responsible for the bimodal behaviour. The influence of mid-rapidity emission has been verified. The two bumps of the bimodal distribution correspond to different excitation energies and similar temperatures. It is also shown that it is possible to correlate the bimodality signal with a change in the distribution of the heaviest fragment charge and a peak in potential energy fluctuations. All together, this set of data is coherent with what would be expected in a finite system if the corresponding system in the thermodynamic limit exhibits a first order phase transition.Comment: 30 pages, 31 figure

    Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets

    Get PDF
    A measurement of beam-helicity asymmetries for single-hadron production in deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV electrons and positrons off gaseous hydrogen and deuterium targets were collected by the HERMES experiment. The asymmetries are presented separately as a function of the Bjorken scaling variable, the hadron transverse momentum, and the fractional energy for charged pions and kaons as well as for protons and anti-protons. These asymmetries are also presented as a function of the three aforementioned kinematic variables simultaneously

    Transverse-target-spin asymmetry in exclusive ω\omega-meson electroproduction

    Get PDF
    Hard exclusive electroproduction of ω\omega mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive πω\pi\omega transition form factor.Comment: DESY Report 15-14
    corecore