1,032 research outputs found

    Hepatic disease as the first manifestation of progressive myoclonus epilepsy of Lafora

    Get PDF
    5 páginas, 2 figuras -- PAGS nros. 1369-1373Background: Lafora disease (LD; progressive myoclonus epilepsy type 2; EPM2) is an autosomal recessive disorder caused by mutations in the EPM2A and EPM2B genes. LD is characterized by the presence of strongly PAS-positive intracellular inclusions (Lafora bodies) in several tissues. Glycogen storage disease type IV (GSD-IV; Andersen disease) is an autosomal recessive disorder characterized by cirrhosis leading to severe liver failure. GSD-IV has been associated with mutations in the glycogen branching enzyme gene (GBE). Histopathologic changes of the liver in both diseases show an identical appearance, although cirrhosis has never been described in patients with LD. We report a LD family in which the proband presented severe liver failure at onset of the disease. Methods: Clinical histories, physical and neurologic examination, laboratory tests, EEGs, MRI of the brain, and liver or axillary skin biopsies were performed in the two affected siblings. The diagnosis was confirmed by molecular genetic analysis of the EPM2A, EPM2B, and GBE genes and loci. Results: During the first decade of life, abnormalities in liver function tests were detected in the two affected siblings. The proband's liver dysfunction was severe enough to require liver transplantation. Subsequently, both sibs developed LD. Mutation analysis of EPM2A revealed a homozygous Arg241stop mutation in both patients. Conclusions: This is the first description of severe hepatic dysfunction as the initial clinical manifestation of LD. The phenotypic differences between the two affected siblings suggest that modifier genes must condition clinical expression of the disease outside the CNSPeer reviewe

    A non-canonical RNA silencing pathway promotes mRNA degradation in basal fungi

    Get PDF
    The increasing knowledge on the functional relevance of endogenous small RNAs (esRNAs) as riboregulators has stimulated the identification and characterization of these molecules in numerous eukaryotes. In the basal fungus Mucor circinelloides, an emerging opportunistic human pathogen, esRNAs that regulate the expression of many protein coding genes have been described. These esRNAs share common machinery for their biogenesis consisting of an RNase III endonuclease Dicer, a single Argonaute protein and two RNA-dependent RNA polymerases. We show in this study that, besides participating in this canonical dicer-dependent RNA interference (RNAi) pathway, the rdrp genes are involved in a novel dicer-independent degradation process of endogenous mRNAs. The analysis of esRNAs accumulated in wild type and silencing mutants demonstrates that this new rdrp-dependent dicer-independent regulatory pathway, which does not produce sRNA molecules of discrete sizes, controls the expression of target genes promoting the specific degradation of mRNAs by a previously unknown RNase. This pathway mainly regulates conserved genes involved in metabolism and cellular processes and signaling, such as those required for heme biosynthesis, and controls responses to specific environmental signals. Searching the Mucor genome for candidate RNases to participate in this pathway, and functional analysis of the corresponding knockout mutants, identified a new protein, R3B2. This RNase III-like protein presents unique domain architecture, it is specifically found in basal fungi and, besides its relevant role in the rdrp-dependent dicer-independent pathway, it is also involved in the canonical dicer-dependent RNAi pathway, highlighting its crucial role in the biogenesis and function of regulatory esRNAs. The involvement of RdRPs in RNA degradation could represent the first evolutionary step towards the development of an RNAi mechanism and constitutes a genetic link between mRNA degradation and post-transcriptional gene silencing

    Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress

    Get PDF
    The expression of ribosomal protein (RP) genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cells. An analysis of the tiling array data, together with transcription rates data, shows a poor correlation, indicating that the drop in the RP pre-mRNA levels is not merely a result of the lowered RP transcription rates. A kinetic study using quantitative RT-PCR confirmed the decrease in the levels of several RP-unspliced transcripts during the first 15 minutes of osmotic stress, which seems independent of MAP kinase Hog1. Moreover, we found that the mutations in the components of the nonsense-mediated mRNA decay (NMD), Upf1, Upf2, Upf3 or in exonuclease Xrn1, eliminate the osmotic stress-induced drop in RP pre-mRNAs. Altogether, our results indicate that the degradation of yeast RP unspliced transcripts by NMD increases during osmotic stress, and suggest that this might be another mechanism to control RP synthesis during the stress response

    Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus using spray drying

    Get PDF
    Three different milk proteins — skim milk powder (SMP), sodium caseinate (SC) and whey protein concentrate (WPC) — were tested for their ability to stabilize microencapsulated L. acidophilus produced using spray drying. Maltodextrin (MD) was used as the primary wall material in all samples, milk protein as the secondary wall material (7:3 MD/milk protein ratio) and the simple sugars, d-glucose and trehalose were used as tertiary wall materials (8:2:2 MD/protein/sugar ratio) combinations of all wall materials were tested for their ability to enhance the microbial and techno-functional stability of microencapsulated powders. Of the optional secondary wall materials, WPC improved L. acidophilus viability, up to 70 % during drying; SMP enhanced stability by up to 59 % and SC up to 6 %. Lactose and whey protein content enhanced thermoprotection; this is possibly due to their ability to depress the glass transition and melting temperatures and to release antioxidants. The resultant L. acidophilus powders were stored for 90 days at 4 °C, 25 °C and 35 °C and the loss of viability calculated. The highest survival rates were obtained at 4 °C, inactivation rates for storage were dependent on the carrier wall material and the SMP/d-glucose powders had the lowest inactivation rates (0.013 day−1) whilst the highest was observed for the control containing only MD (0.041 day−1) and the SC-based system (0.030 day−1). Further increase in storage temperature (25 °C and 35 °C) was accompanied by increase of the inactivation rates of L. acidophilus that followed Arrhenius kinetics. In general, SMP-based formulations exhibited the highest temperature dependency whilst WPC the lowest. d-Glucose addition improved the storage stability of the probiotic powders although it was accompanied by an increase of the residual moisture, water activity and hygroscopicity, and a reduction of the glass transition temperature in the tested systems

    The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides

    Get PDF
    BACKGROUND: RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which they derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants.  RESULTS: Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway.  CONCLUSION: This work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model

    Activity of the SNARE Protein SNAP29 at the Endoplasmic Reticulum and Golgi Apparatus

    Get PDF
    Snap29 is a conserved regulator of membrane fusion essential to complete autophagy and to support other cellular processes, including cell division. In humans, inactivating SNAP29 mutations causes CEDNIK syndrome, a rare multi-systemic disorder characterized by congenital neuro-cutaneous alterations. The fibroblasts of CEDNIK patients show alterations of the Golgi apparatus (GA). However, whether and how Snap29 acts at the GA is unclear. Here we investigate SNAP29 function at the GA and endoplasmic reticulum (ER). As part of the elongated structures in proximity to these membrane compartments, a pool of SNAP29 forms a complex with Syntaxin18, or with Syntaxin5, which we find is required to engage SEC22B-loaded vesicles. Consistent with this, in HeLa cells, in neuroepithelial stem cells, and in vivo, decreased SNAP29 activity alters GA architecture and reduces ER to GA trafficking. Our data reveal a new regulatory function of Snap29 in promoting secretory trafficking

    Dynamic changes in eIF4F-mRNA interactions revealed by global analyses of environmental stress responses

    Get PDF
    BACKGROUND: Translation factors eIF4E and eIF4G form eIF4F, which interacts with the messenger RNA (mRNA) 5' cap to promote ribosome recruitment and translation initiation. Variations in the association of eIF4F with individual mRNAs likely contribute to differences in translation initiation frequencies between mRNAs. As translation initiation is globally reprogrammed by environmental stresses, we were interested in determining whether eIF4F interactions with individual mRNAs are reprogrammed and how this may contribute to global environmental stress responses. RESULTS: Using a tagged-factor protein capture and RNA-sequencing (RNA-seq) approach, we have assessed how mRNA associations with eIF4E, eIF4G1 and eIF4G2 change globally in response to three defined stresses that each cause a rapid attenuation of protein synthesis: oxidative stress induced by hydrogen peroxide and nutrient stresses caused by amino acid or glucose withdrawal. We find that acute stress leads to dynamic and unexpected changes in eIF4F-mRNA interactions that are shared among each factor and across the stresses imposed. eIF4F-mRNA interactions stabilised by stress are predominantly associated with translational repression, while more actively initiating mRNAs become relatively depleted for eIF4F. Simultaneously, other mRNAs are insulated from these stress-induced changes in eIF4F association. CONCLUSION: Dynamic eIF4F-mRNA interaction changes are part of a coordinated early translational control response shared across environmental stresses. Our data are compatible with a model where multiple mRNA closed-loop complexes form with differing stability. Hence, unexpectedly, in the absence of other stabilising factors, rapid translation initiation on mRNAs correlates with less stable eIF4F interactions

    Dementia Caregiver Burden: A Research Update and Critical Analysis

    Get PDF
    Purpose of Review: This article provides an updated review of the determinants of caregiver burden and depression, with a focus on care demands and especially the differential effects of various neuropsychiatric symptoms or symptom clusters. Moreover, studies on caregivers for frontotemporal and Lewy body dementias were referred to in order to identify differences and similarities with the mainstream literature based largely on Alzheimer caregivers. Recent Findings: As a group, neuropsychiatric symptoms are most predictive of caregiver burden and depression regardless of dementia diagnosis, but the effects appear to be driven primarily by disruptive behaviors (e.g., agitation, aggression, disinhibition), followed by delusions and mood disturbance. Disruptive behaviors are more disturbing partly because of the adverse impact on the emotional connection between the caregiver and the care-recipient and partly because they exacerbate difficulties in other domains (e.g., caring for activities of daily living). In behavioral variant frontotemporal dementia, not only are these disruptive behaviors more prominent but they are also more disturbing due to the care-recipient’s insensitivity to others’ feelings. In Lewy body dementia, visual hallucinations also appear to be distressing. Summary: The disturbing nature of disruptive behaviors cuts across dementia conditions, but the roles played by symptoms that are unique or particularly serious in a certain condition need to be explored further

    Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication

    Get PDF
    International audienceno abstrac

    O-glycan determinants regulate VWF trafficking to Weibel-Palade bodies

    Get PDF
    von Willebrand factor (VWF) undergoes complex posttranslational modification within endothelial cells (ECs) before secretion. This includes significant N- and O-linked glycosylation. Previous studies have demonstrated that changes in N-linked glycan structures significantly influence VWF biosynthesis. In contrast, although abnormalities in VWF O-linked glycans (OLGs) have been associated with enhanced VWF clearance, their effect on VWF biosynthesis remains poorly explored. Herein, we report a novel role for OLG determinants in regulating VWF biosynthesis and trafficking within ECs. We demonstrate that alterations in OLGs (notably reduced terminal sialylation) lead to activation of the A1 domain of VWF within EC. In the presence of altered OLG, VWF multimerization is reduced and Weibel-Palade body (WPB) formation significantly impaired. Consistently, the amount of VWF secreted from WPB after EC activation was significantly reduced in the context of O-glycosylation inhibition. Finally, altered OLG on VWF not only reduced the amount of VWF secreted after EC activation but also affected its hemostatic efficacy. Notably, VWF secreted after WPB exocytosis consisted predominantly of low molecular weight multimers, and the length of tethered VWF string formation on the surface of activated ECs was significantly reduced. In conclusion, our data therefore support the hypothesis that alterations in O-glycosylation pathways directly affect VWF trafficking within human EC. These findings are interesting given that previous studies have reported altered OLG on plasma VWF (notably increased T-antigen expression) in patients with von Willebrand disease.</p
    corecore