4,374 research outputs found

    Cuidados Paliativos en Mallorca

    Get PDF

    Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations.

    Get PDF
    Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A2A GPCR. While Na+ reinforces an inactive ensemble and a partial-agonist stabilized state, Ca2+ and Mg2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu

    Nuevos datos sobre la presencia de especies nuevas o poco conocidas de la ictiofauna marina de Galicia (II)

    Get PDF
    La bibliografĂ­a ictiolĂłgica de Galicia tiene una larga historia que ha ido enriqueciĂ©ndose con sucesivas aportaciones. Durante los Ășltimos años, una mayor atenciĂłn cientĂ­fica y el estrecho contacto con el sector pesquero, han permitido mejorar el conocimiento de la ictiofauna marina de Galicia, dando lugar al registro de especies nuevas para aguas gallegas y europeas (Bañón, 2002; Bañón et al., 2007) y a la confirmaciĂłn de la presencia de especies citadas anteriormente. En este trabajo se establecen seis nuevas citas sobre la presencia de especies nuevas o poco conocidas para las aguas de Galicia: Anjova Pomatomus saltatrix (Linnaeus, 1766) (Pomatomatidae), Jurelo negro Trachurus picturatus (Bowdich, 1825) (Carangidae), Palometa blanca Trachinotus ovatus (Linnaeus, 1758), pez volador Cheilopogon heterurus. (Rafinesque, 1810), Linterna negra Benthosema glaciale (Reinhardt, 1838) y Limanda noruega Phrynorhombus norvegicus (GĂŒnther, 1862) (Scophthalmidae)

    Further results on the cross norm criterion for separability

    Full text link
    In the present paper the cross norm criterion for separability of density matrices is studied. In the first part of the paper we determine the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that the greatest cross norm criterion induces a novel computable separability criterion for bipartite systems. This new criterion is a necessary but in general not a sufficient criterion for separability. It is shown, however, that for all pure states, for Bell diagonal states, for Werner states in dimension d=2 and for isotropic states in arbitrary dimensions the new criterion is necessary and sufficient. Moreover, it is shown that for Werner states in higher dimensions (d greater than 2), the new criterion is only necessary.Comment: REVTeX, 19 page

    Photodetection of propagating quantum microwaves in circuit QED

    Get PDF
    We develop the theory of a metamaterial composed of an array of discrete quantum absorbers inside a one-dimensional waveguide that implements a high-efficiency microwave photon detector. A basic design consists of a few metastable superconducting nanocircuits spread inside and coupled to a one-dimensional waveguide in a circuit QED setup. The arrival of a {\it propagating} quantum microwave field induces an irreversible change in the population of the internal levels of the absorbers, due to a selective absorption of photon excitations. This design is studied using a formal but simple quantum field theory, which allows us to evaluate the single-photon absorption efficiency for one and many absorber setups. As an example, we consider a particular design that combines a coplanar coaxial waveguide with superconducting phase qubits, a natural but not exclusive playground for experimental implementations. This work and a possible experimental realization may stimulate the possible arrival of "all-optical" quantum information processing with propagating quantum microwaves, where a microwave photodetector could play a key role.Comment: 27 pages, submitted to Physica Scripta for Nobel Symposium on "Qubits for Quantum Information", 200

    The evolution of the dust temperatures of galaxies in the SFR–M∗plane up to z ~ 2

    Get PDF
    We study the evolution of the dust temperature of galaxies in the SFR−M ∗ plane up to z ∌ 2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M ∗ ) and redshift estimates, we grid the SFR−M ∗ parameter space in several redshift ranges and estimate the mean dust temperature (T dust ) of each SFR–M ∗ −z bin. Dust temperatures are inferred using the stacked far-infrared flux densities (100–500ÎŒm) of our SFR–M ∗ −z bins. At all redshifts, the dust temperature of galaxies smoothly increases with rest-frame infrared luminosities (L IR ), specific SFRs (SSFR; i.e., SFR/M ∗ ), and distances with respect to the main sequence (MS) of the SFR−M ∗ plane (i.e., Δlog(SSFR) MS = log[SSFR(galaxy)/SSFR MS (M ∗ ,z)]). The T dust −SSFR and T dust – Δlog(SSFR) MS correlations are statistically much more significant than the T dust −L IR one. While the slopes of these three correlations are redshift-independent, their normalisations evolve smoothly from z = 0 and z ∌ 2. We convert these results into a recipe to derive T dust from SFR, M ∗ and z, valid out to z ∌ 2 and for the stellar mass and SFR range covered by our stacking analysis. The existence of a strong T dust −Δlog(SSFR) MS correlation provides us with several pieces of information on the dust and gas content of galaxies. Firstly, the slope of the T dust −Δlog(SSFR) MS correlation can be explained by the increase in the star-formation efficiency (SFE; SFR/M gas ) with Δlog(SSFR) MS as found locally by molecular gas studies. Secondly, at fixed Δlog(SSFR) MS , the constant dust temperature observed in galaxies probing wide ranges in SFR and M ∗ can be explained by an increase or decrease in the number of star-forming regions with comparable SFE enclosed in them. And thirdly, at high redshift, the normalisation towards hotter dust temperature of the T dust −Δlog(SSFR) MS correlation can be explained by the decrease in the metallicities of galaxies or by the increase in the SFE of MS galaxies. All these results support the hypothesis that the conditions prevailing in the star-forming regions of MS and far-above-MS galaxies are different. MS galaxies have star-forming regions with low SFEs and thus cold dust, while galaxies situated far above the MS seem to be in a starbursting phase characterised by star-forming regions with high SFEs and thus hot dust

    Coupled/decoupled spray simulation comparison of the ECN spray a condition with the Sigma-Y Eulerian atomization model

    Full text link
    This work evaluates the performance of the ÎŁ-Y Eulerian atomization model at reproducing the internal structure of a diesel spray in the near- field. In the study, three different computational domains have been used in order to perform 3D and 2D coupled simulations, where the internal nozzle flow and external spray are modeled in one continuous domain, and 2D decoupled simulations, where only the external spray is modeled. While the 3D simulation did the best job of capturing the dense zone of the spray, the 2D simulations also performed well, with the coupled 2D simulation slightly outperforming the decoupled simulation. The similarity in results between the coupled and the decoupled simulation show that internal and external flow calculations can be performed independently. In addition, the use of spatially averaged nozzle outlet conditions, in the case of an axisymmetric (single-hole) convergent nozzle, leads to a slightly worse near-field spray predictions but to an accurate far-field ones. Finally, a novel constraint on turbulent driven mixing multiphase flows is introduced which prevents the slip velocity from exceeding the magnitude of the turbulent fluctuations through a realizable Schmidt number. This constraint increased model stability, allowing for a 4x increase in Courant number.Authors acknowledge that part of this work was possible thanks to the Programa de Ayudas de Investigacion y Desarrollo (PAID-2013 3198) of the Universitat Politecnica de Valencia. Also this study was partially funded by the Spanish Ministry of Economy and Competitiveness in the frame of the COMEFF(TRA2014-59483-R) project.Desantes FernĂĄndez, JM.; GarcĂ­a Oliver, JM.; Pastor EnguĂ­danos, JM.; Pandal-Blanco, A.; Baldwin, E.; Schmidt, DP. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the Sigma-Y Eulerian atomization model. International Journal of Multiphase Flow. 80:89-99. https://doi.org/10.1016/j.ijmultiphaseflow.2015.12.002S89998

    Boost-based MPPT for the MTM PCDU of the Bepicolombo mission

    Get PDF
    BepiColombo is an ESA mission to Mercury to be launched in 2013. A better knowledge of the origin and evolution of the planet, of its structure and vestigial atmosphere, of its magnetosphere, and of the origin of its magnetic field are the main objectives for the program. The journey to Mercury will last for approximately 6 years, and will be based on the gravity of the Earth, Venus and Mercury, and on the use of Solar Electric Propulsion. For the last, the use of the MPPT concept is essential for the mission. A mission power demand of up to 14kW is foreseen in the cruise phase for the Mercury Transfer Module (MTM) PCDU, being the power subsystem based on a 100V bus. Under this scenario, the use of a classical step-down regulator for the implementation of the MPPT power cell would require to keep the worst case minimum solar array voltage over the bus for any mission operating condition. Then, the maximum solar array voltage would become as high as to overpass the insulating capability of the isolation layer between the solar array cells and the substrate, under the high temperature environment experienced by the spacecraft near Mercury. As a result, the development of a step-up MPPT Array Power Regulator (APR) becomes a critical issue for the mission feasibility. Moreover, due to the hard environment that the solar array will be exposed to, the segregation of the solar array power is a very desirable feature. Furthermore, apart from the two classical operating modes of the APR – conductance or MPPT, depending on the spacecraft user loads demand and the available solar array power – the APR will have to operate in S3R mode for solar array voltages over the bus, with a fully autonomous transition between the three operating modes. This paper covers all the aspects related with the design of the APR MPPT concept and its implementation: APR power cell topology, control scheme, control strategy, protections. The implications on the design of the MTM PCDU MEA will be also addressed. Finally, they will be presented the results of the test carried out over an 1/10 scaled-down engineering model of the BepiColombo PCU - including 3 APRs - in front of the real operating conditions foreseen for the MTM PCDU, including all the relevant issues related to the behaviour of the Electric Propulsion load like beam-out events and load transients

    A consistent, scalable model for Eulerian spray modeling

    Full text link
    Despite great practical interest in how sprays emanate from fuel injectors, the near-nozzle region has remained a challenge for spray modelers. Recently, Eulerian models have shown promise in capturing the fast gas-liquid interactions in the near field. However, with the inclusion of compressibility, it can be difficult to maintain consistency between the hydrodynamic and thermodynamic variables. In order to resolve numerical inconsistencies that occur in segregated solutions of Eulerian spray model equations as well as to provide good scalability and stability, a new construction of a -Y model is introduced. This construction is built around an IMEX-RK3 algorithm which offers accuracy and efficiency. The new algorithm is compared to an existing implementation for speed and is validated against experimental measurements of spray evolution in order to test the accuracy. The predictions of the new construction are slightly more accurate and, when tested on 256 processors, are 34 times faster.Also this research used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. The authors gratefully acknowledge the computing resources provided on the Texas Advanced Computing Center (TACC) at The University of Texas at Austin that have contributed to the research results reported within this paper URL: http://www.tacc.utexas.edu.Pandal-Blanco, A.; Pastor EnguĂ­danos, JM.; GarcĂ­a Oliver, JM.; Baldwin, E.; Schmidt, D. (2016). A consistent, scalable model for Eulerian spray modeling. International Journal of Multiphase Flow. 83:162-171. doi:10.1016/j.ijmultiphaseflow.2016.04.003S1621718
    • 

    corecore