235 research outputs found
Accounting for the foreground contribution to the dust emission towards Kepler's supernova remnant
‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.15061.xWhether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (sub-mm) observations, sensitive to cold dust, have shown an excess at 450 and 850 μm in young remnants Cassiopeia A (Cas A) and Kepler. Some of the sub-mm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper, we explore the emission from material towards Kepler using sub-mm continuum imaging and spectroscopic observations of atomic and molecular gas, via H i, 12CO(J= 2–1) and 13CO(J= 2–1). We detect weak CO emission (peak T*A = 0.2–1 K, 1–2 km s−1 full width at half-maximum) from diffuse, optically thin gas at the locations of some of the sub-mm clumps. The contribution to the sub-mm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is 0.1–1.2 M⊙ , about half of the quoted values in the original study by Morgan et al., but still sufficient to explain the origin of dust at high redshifts.Peer reviewe
More on scattering of Chern-Simons vortices
I derive a general formalism for finding kinetic terms of the effective
Lagrangian for slowly moving Chern-Simons vortices. Deformations of fields
linear in velocities are taken into account. From the equations they must
satisfy I extract the kinetic term in the limit of coincident vortices. For
vortices passing one over the other there is locally the right-angle
scattering. The method is based on analysis of field equations instead of
action functional so it may be useful also for nonvariational equations in
nonrelativistic models of Condensed Matter Physics.Comment: discussion around Eq.(45) is generalised, one more condition for the
local right-angle scattering is adde
H-ATLAS/GAMA and HeViCS - dusty early-type galaxies in different environments
NKA acknowledges the support of the Science and Technology Facilities Council. LD, RJI and SJM acknowledge support from the European Research Council Advanced Grant COSMICISM. IDL gratefully acknowledges the support of the Flemish Fund for Scientific Research (FWO-Vlaanderen). KR acknowledges support from the European Research Council Starting Grant SEDmorph (P.I. V. Wild). Date of acceptance: 22/05/2015The Herschel Space Observatory has had a tremendous impact on the study of extragalactic dust. Specifically, early-type galaxies (ETG) have been the focus of several studies. In this paper, we combine results from two Herschel studies -a Virgo cluster study Herschel Virgo Cluster Survey (HeViCS) and a broader, low-redshift Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)/Galaxy and Mass Assembly (GAMA) study -and contrast the dust and associated properties for similar mass galaxies. This comparison is motivated by differences in results exhibited between multiple Herschel studies of ETG. A comparison between consistent modified blackbody derived dust mass is carried out, revealing strong differences between the two samples in both dust mass and dust-to-stellar mass ratio. In particular, the HeViCS sample lacks massive ETG with as high a specific dust content as found in H-ATLAS. This is most likely connected with the difference in environment for the two samples. We calculate nearest neighbour environment densities in a consistent way, showing that H-ATLAS ETG occupy sparser regions of the local Universe, whereas HeViCS ETG occupy dense regions. This is also true for ETG that are not Herschel-detected but are in the Virgo and GAMA parent samples. Spectral energy distributions are fit to the panchromatic data. From these, we find that in H-ATLAS the specific star formation rate anticorrelates with stellar mass and reaches values as high as in our Galaxy. On the other hand HeViCS ETG appear to have little star formation. Based on the trends found here, H-ATLAS ETG are thought to have more extended star formation histories and a younger stellar population than HeViCS ETG.Publisher PDFPeer reviewe
QED Effective Action Revisited
The derivation of a convergent series representation for the quantum
electrodynamic effective action obtained by two of us (S.R.V. and D.R.L.) in
[Can. J. Phys. vol. 71, p. 389 (1993)] is reexamined. We present more details
of our original derivation. Moreover, we discuss the relation of the
electric-magnetic duality to the integral representation for the effective
action, and we consider the application of nonlinear convergence acceleration
techniques which permit the efficient and reliable numerical evaluation of the
quantum correction to the Maxwell Lagrangian.Comment: 20 pages, LaTeX, 1 table; minor additions and adjustments; to appear
in Can. J. Phy
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Should I Stay or Should I Go? Firm Heterogeneity in the Post-crisis Period
Existing microeconomic research on exporting firms is dominated by empirical findings across time and countries based on two theories of why firms choose to export. One requires firms to be better performers before entry, the other requires there to be improvements in performance as a result of entry. In this paper, we disentangle entry to, and exit from, the overseas market for UK manufacturing firms to better understand the motivations and characteristics underlying both decisions. We explore the extent to which changes in the macroeconomic environment may influence behaviour, following a time of global financial turbulence
Search for pair production of boosted Higgs bosons via vector-boson fusion in the bb¯bb¯ final state using pp collisions at √s = 13 TeV with the ATLAS detector
A search for Higgs boson pair production via vector-boson fusion is performed in the Lorentz-boosted regime,
where a Higgs boson candidate is reconstructed as a single large-radius jet, using 140 fb−1 of proton–proton
collision data at √s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Only Higgs boson
decays into bottom quark pairs are considered. The search is particularly sensitive to the quartic coupling between
two vector bosons and two Higgs bosons relative to its Standard Model prediction, K2V . This study constrains K2V
to 0.55 < K2V < 1.49 at the 95% confidence level. The value K2V = 0 is excluded with a significance of 3.8 standard
deviations with other Higgs boson couplings fixed to their Standard Model values. A search for new heavy spin-0
resonances that would mediate Higgs boson pair production via vector-boson fusion is carried out in the mass
range of 1–5 TeV for the first time under several model and decay-width assumptions. No significant deviation
from the Standard Model hypothesis is observed and exclusion limits at the 95% confidence level are derived
Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
Differential cross-sections for events with missing transverse momentum and jets measured with the ATLAS detector in 13 TeV proton-proton collisions
Measurements of inclusive, diferential cross-sections for the production of events with missing transverse momentum in association with jets in proton-proton collisions at √s = 13 TeV are presented. The measurements are made with the ATLAS detector using an integrated luminosity of 140 fb−1 and include measurements of dijet distributions in a region
in which vector-boson fusion processes are enhanced. They are unfolded to correct for detector resolution and efficiency within the fiducial acceptance, and are designed to allow robust
comparisons with a wide range of theoretical predictions. A measurement of differential cross sections for the Z → νν process is made. The measurements are generally well-described
by Standard Model predictions except for the dijet invariant mass distribution. Auxiliary measurements of the hadronic system recoiling against isolated leptons, and photons, are
also made in the same phase space. Ratios between the measured distributions are then derived, to take advantage of cancellations in modelling effects and some of the major systematic uncertainties. These measurements are sensitive to new phenomena, and provide a mechanism to easily set constraints on phenomenological models. To illustrate the robustness of the approach, these ratios are compared with two common Dark Matter models, where
the constraints derived from the measurement are comparable to those set by dedicated detector-level searches
- …