1,598 research outputs found

    How light can the lightest neutralino be?

    Full text link
    In this talk we summarize previous work on mass bounds of a light neutralino in the Minimal Supersymmetric Standard Model. We show that without the GUT relation between the gaugino mass parameters M_1 and M_2, the mass of the lightest neutralino is essentially unconstrained by collider bounds and precision observables. We conclude by considering also the astrophysics and cosmology of a light neutralino.Comment: 6 pages, 3 figures, to appear in the proceedings of the 16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 201

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra

    Get PDF
    We present the temperature and polarization angular power spectra of the cosmic microwave background (CMB) derived from the first 5 years of WMAP data. The 5-year temperature (TT) spectrum is cosmic variance limited up to multipole l=530, and individual l-modes have S/N>1 for l<920. The best fitting six-parameter LambdaCDM model has a reduced chi^2 for l=33-1000 of chi^2/nu=1.06, with a probability to exceed of 9.3%. There is now significantly improved data near the third peak which leads to improved cosmological constraints. The temperature-polarization correlation (TE) is seen with high significance. After accounting for foreground emission, the low-l reionization feature in the EE power spectrum is preferred by \Delta\chi^2=19.6 for optical depth tau=0.089 by the EE data alone, and is now largely cosmic variance limited for l=2-6. There is no evidence for cosmic signal in the BB, TB, or EB spectra after accounting for foreground emission. We find that, when averaged over l=2-6, l(l+1)C^{BB}_l/2\pi < 0.15 uK^2 (95% CL).Comment: 29 pages, 13 figures, accepted by ApJ

    Resolving the high redshift Lyman-alpha forest in smoothed particle hydrodynamics simulations

    Get PDF
    We use a large set of cosmological smoothed particle hydrodynamics (SPH) simulations to examine the effect of mass resolution and box size on synthetic Lya forest spectra at 2 \leq z \leq 5. The mass resolution requirements for the convergence of the mean Lya flux and flux power spectrum at z=5 are significantly stricter than at lower redshift. This is because transmission in the high redshift Lya forest is primarily due to underdense regions in the intergalactic medium (IGM), and these are less well resolved compared to the moderately overdense regions which dominate the Lya forest opacity at z~2-3. We further find that the gas density distribution in our simulations differs significantly from previous results in the literature at large overdensities (\Delta>10). We conclude that studies of the Lya forest at z=5 using SPH simulations require a gas particle mass of M_gas \leq 2x10^5 M_sol/h, which is >8 times the value required at z=2. A box size of at least 40 Mpc/h is preferable at all redshifts.Comment: 5 pages, 5 figures, 2 tables, accepted by MNRA

    Cosmological constraints on neutrino plus axion hot dark matter: Update after WMAP-5

    Full text link
    We update our previous constraints on two-component hot dark matter (axions and neutrinos), including the recent WMAP 5-year data release. Marginalising over sum m_nu provides m_a < 1.02 eV (95% C.L.) for the axion mass. In the absence of axions we find sum m_nu < 0.63 eV (95% C.L.).Comment: 4 pages, 1 figure, uses iopart.cls; v2 matches published versio

    How Does Feedback Affect Milky Way Satellite Formation?

    Full text link
    We use sub-parsec resolution hydrodynamic resimulations of a Milky Way (MW) like galaxy at high redshift to investigate the formation of the MW satellite galaxies. More specifically, we assess the impact of supernova feedback on the dwarf progenitors of these satellite, and the efficiency of a simple instantaneous reionisation scenario in suppressing star formation at the low-mass end of this dwarf distribution. Identifying galaxies in our high redshift simulation and tracking them to z=0 using a dark matter halo merger tree, we compare our results to present-day observations and determine the epoch at which we deem satellite galaxy formation must be completed. We find that only the low-mass end of the population of luminous subhalos of the Milky-Way like galaxy is not complete before redshift 8, and that although supernovae feedback reduces the stellar mass of the low-mass subhalos (log(M/Msolar) < 9), the number of surviving satellites around the Milky-Way like galaxy at z = 0 is the same in the run with or without supernova feedback. If a luminous halo is able to avoid accretion by the Milky-Way progenitor before redshift 3, then it is likely to survive as a MW satellite to redshift 0.Comment: Oral Presentation, Proceedings of "A Universe of Dwarf Galaxies" Conference, Lyon 201

    Maximum likelihood, parametric component separation and CMB B-mode detection in suborbital experiments

    Full text link
    We investigate the performance of the parametric Maximum Likelihood component separation method in the context of the CMB B-mode signal detection and its characterization by small-scale CMB suborbital experiments. We consider high-resolution (FWHM=8') balloon-borne and ground-based observatories mapping low dust-contrast sky areas of 400 and 1000 square degrees, in three frequency channels, 150, 250, 410 GHz, and 90, 150, 220 GHz, with sensitivity of order 1 to 10 micro-K per beam-size pixel. These are chosen to be representative of some of the proposed, next-generation, bolometric experiments. We study the residual foreground contributions left in the recovered CMB maps in the pixel and harmonic domain and discuss their impact on a determination of the tensor-to-scalar ratio, r. In particular, we find that the residuals derived from the simulated data of the considered balloon-borne observatories are sufficiently low not to be relevant for the B-mode science. However, the ground-based observatories are in need of some external information to permit satisfactory cleaning. We find that if such information is indeed available in the latter case, both the ground-based and balloon-borne experiments can detect the values of r as low as ~0.04 at 95% confidence level. The contribution of the foreground residuals to these limits is found to be then subdominant and these are driven by the statistical uncertainty due to CMB, including E-to-B leakage, and noise. We emphasize that reaching such levels will require a sufficient control of the level of systematic effects present in the data.Comment: 18 pages, 12 figures, 6 table

    Non-Fickian Diffusion Affects the Relation between the Salinity and Hydrate Capacity Profiles in Marine Sediments

    Get PDF
    On-site measurements of water salinity (which can be directly evaluated from the electrical conductivity) in deep-sea sediments is technically the primary source of indirect information on the capacity of the marine deposits of methane hydrates. We show the relation between the salinity (chlorinity) profile and the hydrate volume in pores to be significantly affected by non-Fickian contributions to the diffusion flux---the thermal diffusion and the gravitational segregation---which have been previously ignored in the literature on the subject and the analysis of surveys data. We provide amended relations and utilize them for an analysis of field measurements for a real hydrate deposit.Comment: 7 pages, 2 figures, 1 table, submitted to Compte Rendus Mecaniqu

    BEAMS: separating the wheat from the chaff in supernova analysis

    Full text link
    We introduce Bayesian Estimation Applied to Multiple Species (BEAMS), an algorithm designed to deal with parameter estimation when using contaminated data. We present the algorithm and demonstrate how it works with the help of a Gaussian simulation. We then apply it to supernova data from the Sloan Digital Sky Survey (SDSS), showing how the resulting confidence contours of the cosmological parameters shrink significantly.Comment: 23 pages, 9 figures. Chapter 4 in "Astrostatistical Challenges for the New Astronomy" (Joseph M. Hilbe, ed., Springer, New York, forthcoming in 2012), the inaugural volume for the Springer Series in Astrostatistic

    High-grade metamorphic rocks from Skallevikshalsen in the Lutzow-Holm Complex, East Antarctica: metamorphic conditions and possibility of partial melting

    Get PDF
    The high-grade metamorphic rocks of Skallevikshalsen, Lutzow-Holm Complex, East Antarctica predominantly comprise garnet-sillimanite gneiss, garnet-spinel-sillimanite gneiss, garnet-biotite gneiss and garnet-two pyroxene-mafic granulite. The metamorphic conditions were estimated using various geothermometers and geobarometers for garnet-biotite gneiss and mafic gneiss. The results were 770-940℃and 0.65-1.2 GPa for garnet-biotite gneiss and 780-960℃ and 0.6-1.1 GPa for mafic gneiss. Garnet-biotite gneiss is widespread in this area and displays a well-developed migmatitic structure. Garnet porphyroblasts in the leucosome and the boundaries between leucosome and melanosome in garnet-biotite gneiss commonly have a poikiloblastic texture with euhedral feldspar and quartz inclusions. High Y concentrations in garnet cores, high An values for plagioclase inclusions, and high Ba contents in K-feldspar from garnet-biotite gneiss are inferred to reflect growth in the presence of partial melt. Garnet in garnet-sillimanite gneiss also has high Y and P contents and chemical zoning that implies changes in trace element distribution coefficients. It is suggested that hydrous melt in garnet-sillimanite gneiss was generated during prograde metamorphism while anhydrous restite underwent continuous high-temperature metamorphism. Garnet-sillimanite gneiss is likely to be the restitic product of partial melting and shows evidence for melt segregation and movement

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results

    Full text link
    We present new full-sky temperature and polarization maps in five frequency bands from 23 to 94 GHz, based on data from the first five years of the WMAP sky survey. The five-year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the instrument calibration and in-flight beam response. We present several new tests for systematic errors in the polarization data and conclude that Ka band data (33 GHz) is suitable for use in cosmological analysis, after foreground cleaning. This significantly reduces the overall polarization uncertainty. With the 5 year WMAP data, we detect no convincing deviations from the minimal 6-parameter LCDM model: a flat universe dominated by a cosmological constant, with adiabatic and nearly scale-invariant Gaussian fluctuations. Using WMAP data combined with measurements of Type Ia supernovae and Baryon Acoustic Oscillations, we find (68% CL uncertainties): Omega_bh^2 = 0.02267 \pm 0.00059, Omega_ch^2 = 0.1131 \pm 0.0034, Omega_Lambda = 0.726 \pm 0.015, n_s = 0.960 \pm 0.013, tau = 0.084 \pm 0.016, and Delta_R^2 = (2.445 \pm 0.096) x 10^-9. From these we derive: sigma_8 = 0.812 \pm 0.026, H_0 = 70.5 \pm 1.3 km/s/Mpc, z_{reion} = 10.9 \pm 1.4, and t_0 = 13.72 \pm 0.12 Gyr. The new limit on the tensor-to-scalar ratio is r < 0.22 (95% CL). We obtain tight, simultaneous limits on the (constant) dark energy equation of state and spatial curvature: -0.14 < 1+w < 0.12 and -0.0179 < Omega_k < 0.0081 (both 95% CL). The number of relativistic degrees of freedom (e.g. neutrinos) is found to be N_{eff} = 4.4 \pm 1.5, consistent with the standard value of 3.04. Models with N_{eff} = 0 are disfavored at >99.5% confidence.Comment: 46 pages, 13 figures, and 7 tables. Version accepted for publication, ApJS, Feb-2009. Includes 5-year dipole results and additional references. Also available at http://lambda.gsfc.nasa.gov/product/map/dr3/map_bibliography.cf
    corecore