Abstract

We investigate the performance of the parametric Maximum Likelihood component separation method in the context of the CMB B-mode signal detection and its characterization by small-scale CMB suborbital experiments. We consider high-resolution (FWHM=8') balloon-borne and ground-based observatories mapping low dust-contrast sky areas of 400 and 1000 square degrees, in three frequency channels, 150, 250, 410 GHz, and 90, 150, 220 GHz, with sensitivity of order 1 to 10 micro-K per beam-size pixel. These are chosen to be representative of some of the proposed, next-generation, bolometric experiments. We study the residual foreground contributions left in the recovered CMB maps in the pixel and harmonic domain and discuss their impact on a determination of the tensor-to-scalar ratio, r. In particular, we find that the residuals derived from the simulated data of the considered balloon-borne observatories are sufficiently low not to be relevant for the B-mode science. However, the ground-based observatories are in need of some external information to permit satisfactory cleaning. We find that if such information is indeed available in the latter case, both the ground-based and balloon-borne experiments can detect the values of r as low as ~0.04 at 95% confidence level. The contribution of the foreground residuals to these limits is found to be then subdominant and these are driven by the statistical uncertainty due to CMB, including E-to-B leakage, and noise. We emphasize that reaching such levels will require a sufficient control of the level of systematic effects present in the data.Comment: 18 pages, 12 figures, 6 table

    Similar works

    Full text

    thumbnail-image