215 research outputs found

    Semi-quantitative Characterization of Secondary Science Teachers’ Use of Three-Dimensional Instruction

    Get PDF
    This quasi-experimental study evaluated middle- and high-school science teachers’ implementation of three-dimensional (3D) instruction as defined by the Next Generation Science Standards. Teachers participated in a long-term professional development (PD) program designed to increase their use of inquiry-based science instruction. We describe our semi-quantitative adaptation of the Educators Evaluating the Quality of Instructional Products: Science rubric version 2 (SQ-EQuIP) to facilitate the longitudinal evaluation of teacher practices with 3D instruction. SQ-EQuIP evaluations revealed that after two years, 80% of PD teachers implemented lessons where students were explicitly and coherently engaged in 3D learning, compared with 22% of comparison teachers. Further, in several cases lesson materials that should support student engagement in 3D learning were not implemented with fidelity. This discrepancy implies that PD developers must use the EQuIP not only to assess lesson or unit plans as intended by its creators, but to also evaluate the implementation of these materials from students’ perspective. The small sample size restricts claims of significance. However, observed trends between teacher groups indicate long-established best practices designed to increase teacher use of inquiry-based practices may also positively impact teacher use of 3D instructional practices

    On the Synthesis and Physical Properties of Iron Doped SnO2 Nanoparticles

    Get PDF
    The synthesis of iron doped tin oxide by pulsed laser pyrolysis is reported. The as obtained nanoparticles have a dominant SnO2 phase (as revealed by Wide Angle X-ray Scattering), with particles of the order of 10 nm. The doping with iron or iron oxide triggers magnetic properties as confirmed by SQUID experiments. EDX measurements supported the presence of Fe while Wide Angle X-ray Scattering failed to sense any iron or iron-oxide phase. It is concluded that Fe is well dispersed within the tin-oxide nanoparticles. The coercitive field has a complex dependence on the Fe/Sn content suggesting that the magnetization is not controlled solely by the amount of Fe dispersed within the nanoparticles

    Transgenic miR156 Switchgrass in the Field: Growth, Recalcitrance and Rust Susceptibility

    Get PDF
    Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. Highexpressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development

    Bonding of the Inner Tracker Silicon Microstrip Modules

    Get PDF
    Microbonding of the CMS Tracker Inner Barrel (TIB) and Tracker Inner Disks (TID) modules was shared among six different Italian Institutes. The organization devised and the infrastructure deployed to handle this task is illustrated. Microbonding specifications and procedures for the different types of TIB and TID modules are given. The tooling specially designed and developed for these types of modules is described. Experience of production is presented. Attained production rates are given. An analysis of the microbonding quality achieved is presented, based on bond strengths measured in sample bond pull tests as well as on rates of bonding failures. Italian Bonding Centers routinely performed well above minimum specifications and a very low global introduced failure rate, at the strip level, of only ∌\sim0.015 \% is observed

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    A focus on selected perspectives of the NUMEN project

    Get PDF
    The use of double charge exchange reactions is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay half-life. The strategy adopted in the experimental campaigns performed at INFN - Laboratori Nazionali del Sud and in the analysis methods within the NUMEN project is briefly described, emphasizing the advantages of the multi-channel approach to nuclear reaction data analysis. An overview on the research and development activities on the MAGNEX magnetic spectrometer is also given, with a focus on the chosen technological solutions for the focal plane detector which will guarantee the performances at high-rate conditions

    Performance studies of the CMS strip tracker before installation

    Get PDF
    Peer reviewe
    • 

    corecore