146 research outputs found

    Complex Functional Maps : a Conformal Link Between Tangent Bundles

    Get PDF
    International audienceIn this paper, we introduce complex functional maps, which extend the functional map framework to conformal maps between tangent vector fields on surfaces. A key property of these maps is their orientation awareness. More specifically, we demonstrate that unlike regular functional maps that link functional spaces of two manifolds, our complex functional maps establish a link between oriented tangent bundles, thus permitting robust and efficient transfer of tangent vector fields. By first endowing and then exploiting the tangent bundle of each shape with a complex structure, the resulting operations become naturally orientationaware, thus favoring orientation and angle preserving correspondence across shapes, without relying on descriptors or extra regularization. Finally, and perhaps more importantly, we demonstrate how these objects enable several practical applications within the functional map framework. We show that functional maps and their complex counterparts can be estimated jointly to promote orientation preservation, regularizing pipelines that previously suffered from orientation-reversing symmetry errors

    About the Effect on the Airfoil Wake Induced by Periodic Mobile Flap

    Get PDF
    The flow in the wake of an aerodynamic airfoil gives us information about the flow pattern that generates the aerodynamic forces. This wake will depend not only on the geometry of the model, but also on the characteristics of the incident flow. If the airfoil has a flow control system, it can modify the characteristics of the resulting flow field. The wake turbulence in this case will be modified. In the near wake, it will be possible to study the mechanisms of generation and vortex shedding, while the analysis of the distant wake provides us with information on the general fluid-dynamic field resulting from the aero-dynamic forces. The objective of the present work is to study the develop of the fluid-dynamic structures found in the NACA 4412 airfoil wake, as well as the development of the same structures when flow control techniques are applied by means of an oscillating Gurney Flap place in the lower surface of the wing model, close to the trailing edge. The flow control system was set at different frequencies. In order to study the effect of the control mechanism on the wake, hot wire anemometry techniques were used. Two components of the velocity vector were measured - longitudinal and vertical by means of a vertical array of three sensors acquiring simultaneously. Velocity fluctuations will be analyzed, as well as turbulence intensities, integral scales and flow energy, in order to quantify the turbulent wake generated and understand the mechanisms involved in its generation.Fil: Marañon Di Leo, Julio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Delnero, Juan Sebastian. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Echapresto Garay, Iban. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gamarra, Ariel Nicolas. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; ArgentinaFil: Mantelli, Pablo Marcelo. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; ArgentinaFil: Donati, Javier. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Pressure dependence of diffusion in simple glasses and supercooled liquids

    Get PDF
    Using molecular dynamics simulation, we have calculated the pressure dependence of the diffusion constant in a binary Lennard-Jones Glass. We observe four temperature regimes. The apparent activation volume drops from high values in the hot liquid to a plateau value. Near the critical temperature of the mode coupling theory it rises steeply, but in the glassy state we find again small values, similar to the ones in the liquid. The peak of the activation volume at the critical temperature is in agreement with the prediction of mode coupling theory

    Transitions between Inherent Structures in Water

    Full text link
    The energy landscape approach has been useful to help understand the dynamic properties of supercooled liquids and the connection between these properties and thermodynamics. The analysis in numerical models of the inherent structure (IS) trajectories -- the set of local minima visited by the liquid -- offers the possibility of filtering out the vibrational component of the motion of the system on the potential energy surface and thereby resolving the slow structural component more efficiently. Here we report an analysis of an IS trajectory for a widely-studied water model, focusing on the changes in hydrogen bond connectivity that give rise to many IS separated by relatively small energy barriers. We find that while the system \emph{travels} through these IS, the structure of the bond network continuously modifies, exchanging linear bonds for bifurcated bonds and usually reversing the exchange to return to nearly the same initial configuration. For the 216 molecule system we investigate, the time scale of these transitions is as small as the simulation time scale (≈1\approx 1 fs). Hence for water, the transitions between each of these IS is relatively small and eventual relaxation of the system occurs only by many of these transitions. We find that during IS changes, the molecules with the greatest displacements move in small ``clusters'' of 1-10 molecules with displacements of ≈0.02−0.2\approx 0.02-0.2 nm, not unlike simpler liquids. However, for water these clusters appear to be somewhat more branched than the linear ``string-like'' clusters formed in a supercooled Lennar d-Jones system found by Glotzer and her collaborators.Comment: accepted in PR

    Slow nonequilibrium dynamics: parallels between classical and quantum glasses and gently driven systems

    Full text link
    We review an scenario for the non-equilibrium dynamics of glassy systems that has been motivated by the exact solution of simple models. This approach allows one to set on firmer grounds well-known phenomenological theories. The old ideas of entropy crisis, fictive temperatures, free-volume... have clear definitions within these models. Aging effects in the glass phase are also captured. One of the salient features of the analytic solution, the breakdown of the fluctuation-dissipation relations, provides a definition of a bonafide {\it effective temperature} that is measurable by a thermometer, controls heat flows, partial equilibrations, and the reaction to the external injection of heat. The effective temperature is an extremely robust concept that appears in non-equilibrium systems in the limit of small entropy production as, for instance, sheared fluids, glasses at low temperatures when quantum fluctuations are relevant, tapped or vibrated granular matter, etc. The emerging scenario is one of partial equilibrations, in which glassy systems arrange their internal degrees of freedom so that the slow ones select their own effective temperatures. It has been proven to be consistent within any perturbative resummation scheme (mode coupling, etc) and it can be challenged by experimental and numerical tests, some of which it has already passed.Comment: 15 pages, 8 figure

    CO or no CO? Narrowing the CO abundance constraint and recovering the H2O detection in the atmosphere of WASP-127 b using SPIRou

    Full text link
    Precise measurements of chemical abundances in planetary atmospheres are necessary to constrain the formation histories of exoplanets. A recent study of WASP-127b, a close-in puffy sub-Saturn orbiting its solar-type host star in 4.2 d, using HST and Spitzer revealed a feature-rich transmission spectrum with strong excess absorption at 4.5 um. However, the limited spectral resolution and coverage of these instruments could not distinguish between CO and/or CO2 absorption causing this signal, with both low and high C/O ratio scenarios being possible. Here we present near-infrared (0.9--2.5 um) transit observations of WASP-127 b using the high-resolution SPIRou spectrograph, with the goal to disentangle CO from CO2 through the 2.3 um CO band. With SPIRou, we detect H2O at a t-test significance of 5.3 sigma and observe a tentative (3 sigma) signal consistent with OH absorption. From a joint SPIRou + HST + Spitzer retrieval analysis, we rule out a CO-rich scenario by placing an upper limit on the CO abundance of log10[CO]<-4.0, and estimate a log10[CO2] of -3.7^(+0.8)_(-0.6), which is the level needed to match the excess absorption seen at 4.5um. We also set abundance constraints on other major C-, O-, and N-bearing molecules, with our results favoring low C/O (0.10^(+0.10)_(-0.06)), disequilibrium chemistry scenarios. We further discuss the implications of our results in the context of planet formation. Additional observations at high and low-resolution will be needed to confirm these results and better our understanding of this unusual world.Comment: 23 pages, 13 figures, Submitted for publication in the Monthly Notice of the Royal Astronomical Societ

    Evidence for the exclusive decay Bc+- to J/psi pi+- and measurement of the mass of the Bc meson

    Get PDF
    We report first evidence for a fully reconstructed decay mode of the B_c^{\pm} meson in the channel B_c^{\pm} \to J/psi \pi^{\pm}, with J/psi \to mu^+mu^-. The analysis is based on an integrated luminosity of 360 pb$^{-1} in p\bar{p} collisions at 1.96 TeV center of mass energy collected by the Collider Detector at Fermilab. We observe 14.6 \pm 4.6 signal events with a background of 7.1 \pm 0.9 events, and a fit to the J/psi pi^{\pm} mass spectrum yields a B_c^{\pm} mass of 6285.7 \pm 5.3(stat) \pm 1.2(syst) MeV/c^2. The probability of a peak of this magnitude occurring by random fluctuation in the search region is estimated as 0.012%.Comment: 7 pages, 3 figures. Version 3, accepted by PR

    SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage

    Get PDF
    We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients
    • …
    corecore