73 research outputs found

    Cytosolic organelles shape calcium signals and exo–endocytotic responses of chromaffin cells

    Full text link

    RGS3 mediates a calcium-dependent termination of G protein signaling in sensory neurons

    No full text
    G proteins modulate synaptic transmission. Regulators of G protein signaling (RGS) proteins accelerate the intrinsic GTPase activity of Gα subunits, and thus terminate G protein activation. Whether RGS proteins themselves are under cellular control is not well defined, particularly in native cells. In dorsal root ganglion neurons overexpressing RGS3, we find that G protein signaling is rapidly terminated (or “desensitized”) by calcium influx through voltage-gated channels. This rapid desensitization is most likely mediated by direct binding of calcium to RGS3, as deletion of an EF-hand domain in RGS3 abolishes both the desensitization (observed physiologically) and a calcium-RGS3 interaction (observed in a gel-shift assay). A naturally occurring variant of RGS3 that lacks the EF hand neither binds calcium nor produces rapid desensitization, giving rise instead to a slower calcium-dependent desensitization that is attenuated by a calmodulin antagonist. Thus, activity-evoked calcium entry in sensory neurons may provide differential control of G protein signaling, depending on the isoform of RGS3 expressed in the cells. In complex neural circuits subjected to abundant synaptic inhibition by G proteins (as occurs in dorsal spinal cord), rapid termination of inhibition by electrical activity by EF hand-containing RGS3 may ensure the faithful transmission of information from the most active sensory inputs

    Agonist trafficking of G(i/o)-mediated α(2A)-adrenoceptor responses in HEL 92.1.7 cells

    No full text
    1. The ability of 19 agonists to elevate Ca(2+) and inhibit forskolin-induced cyclic AMP elevation through α(2A)-adrenoceptors in HEL 92.1.7 cells was investigated. Ligands of catecholamine-like- (five), imidazoline- (nine) and non-catecholamine-non-imidazoline-type (five) were included. 2. The relative maximum responses were similar in both assays. Five ligands were full or nearly full agonists, six produced 20 – 70% of the response to a full agonist and the remaining eight gave lower responses (<20%) so that their potencies were difficult to evaluate. 3. Marked differences in the potencies of the agonists with respect to the two measured responses were seen. The catecholamines were several times less potent in decreasing cyclic AMP than in increasing Ca(2+), whereas the other, both imidazoline and ox-/thiazoloazepine ligands, were several times more potent with respect to the former than the latter response. For instance, UK14,304 was more potent than adrenaline with respect to the cyclic AMP response but less potent than adrenaline with respect to the Ca(2+) response. 4. All the responses were sensitive to pertussis toxin-pretreatment. Also the possible role of PLA(2), β-adrenoceptors or ligand transport or metabolism as a source of error could be excluded. The results suggest that the active receptor states produced by catecholamines and the other agonists are markedly different and therefore have different abilities to activate different signalling pathways
    • …
    corecore