42 research outputs found

    Structure and functions of intangible assets in the knowledge economy

    Get PDF
    The main step that should be taken is the unification of accounting and managerial approaches to intangible assets’ structure, that can be made possible via treating R&D, human and organizational capital that has been internally generated by the company as investment and add it as the supplement to company’s balance sheets

    The pilgrimage genre at the cross-road of Central and Western European cultural traditions of the 16th – 17th centuries: Meletius Smotrytsky’s “Apologia”, Mykolaj Krzysztof Radziwill’s “Peregrinatio” and “The Word of a Certain Old Man” by an anonymous aut

    Get PDF
    У статті вперше здійснено порівняльний аналіз канонічного “Ходіння ігумена Данила” з паломницькими текстами ХVI – ХVII ст. – “Апологією” М. Смотрицького, “Перегринацією” М. К. Радзивіла, анонімним “Словом про якогось там старця”, що мають стосунок до культури України. На підставі вивчення новаторства згаданих творів сформульовано висновок про західноєвропейский компонент у літературному процесі східних слов’ян. Художні особливості паломницького тексту перехідного періоду дають змогу стверджувати: ходіння як жанр сприяло розвитку оповідної форми письма Нового часу; концептуальність паломницького тексту ХVII ст. свідчить про еволюцію жанру ходінь у білоруській та українській літературах.For the first time, the article proposes a comparative analysis of “The Journey of Hegumen Daniil”, a canonic example of the pilgrimage genre, and the pilgrimage texts of 16th and 17th centuries, i.e. Meletius Smotrytsky’s “Apologia”, M.K. Radziwill’s “Peregrinatio”, and “The Word of a Certain Old Man” written by an anonymous author. Upon examination of innovative features characteristic of the above-mentioned texts, we retrace the Western European components in the literary process of Eastern Slavic cultural area. A detailed review of the texts written during the transitional period leads to the conclusion that the pilgrimage genre contributed substantially to the development of narrative patterns in the literature of the New Age. The conceptual model of the 18th century’s texts is indicative of the evolution of pilgrimage genre in Belarusian and Ukrainian literatures

    The Thalamus and Brainstem Act As Key Hubs in Alterations of Human Brain Network Connectivity Induced by Mild Propofol Sedation

    Get PDF
    Despite their routine use during surgical procedures, no consensus has yet been reached on the precise mechanisms by which hypnotic anesthetic agents produce their effects. Molecular, animal and human studies have suggested disruption of thalamocortical communication as a key component of anesthetic action at the brain systems level. Here, we used the anesthetic agent, propofol, to modulate consciousness and to evaluate differences in the interactions of remote neural networks during altered consciousness. We investigated the effects of propofol, at a dose that produced mild sedation without loss of consciousness, on spontaneous cerebral activity of 15 healthy volunteers using functional magnetic resonance imaging (fMRI), exploiting oscillations (<0.1 Hz) in blood oxygenation level-dependent signal across functionally connected brain regions. We considered the data as a graph, or complex network of nodes and links, and used eigenvector centrality (EC) to characterize brain network properties. The EC mapping of fMRI data in healthy humans under propofol mild sedation demonstrated a decrease of centrality of the thalamus versus an increase of centrality within the pons of the brainstem, highlighting the important role of these two structures in regulating consciousness. Specifically, the decrease of thalamus centrality results from its disconnection from a widespread set of cortical and subcortical regions, while the increase of brainstem centrality may be a consequence of its increased influence, in the mildly sedated state, over a few highly central cortical regions key to the default mode network such as the posterior and anterior cingulate cortices

    Mild propofol sedation reduces frontal lobe and thalamic cerebral blood flow: An arterial spin labeling study

    Get PDF
    Mechanisms of anesthetic drug-induced sedation and unconsciousness are still incompletely understood. Functional neuroimaging modalities provide a window to study brain function changes during anesthesia allowing us to explore the sequence of neuro-physiological changes associated with anesthesia. Cerebral perfusion change under an assumption of intact neurovascular coupling is an indicator of change in large-scale neural activity. In this experiment, we have investigated resting state cerebral blood flow (CBF) changes in the human brain during mild sedation, with propofol. Arterial spin labeling (ASL) provides a non-invasive, reliable, and robust means of measuring cerebral blood flow (CBF) and can therefore be used to investigate central drug effects. Mild propofol sedation-related CBF changes were studied at rest (n = 15), in a 3 T MR scanner using a PICORE-QUIPSS II ASL technique. CBF was reduced in bilateral paracingulate cortex, premotor cortex, Broca’s areas, right superior frontal gyrus and also the thalamus. This cerebral perfusion study demonstrates that propofol induces suppression of key cortical (frontal lobe) and subcortical (thalamus) regions during mild sedation

    Contributions and complexities from the use of in-vivo animal models to improve understanding of human neuroimaging signals.

    Get PDF
    Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in-vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anaesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologues within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges

    Effects of caffeine on reaction time are mediated by attentional rather than motor processes

    Get PDF
    Background Caffeine has a well-established effect on reaction times (RTs) but the neurocognitive mechanisms underlying this are unclear. Methods In the present study, 15 female participants performed an oddball task after ingesting caffeine or a placebo, and electroencephalographic data were obtained. Single-trial P3b latencies locked to the stimulus and to the response were extracted and mediation models were fitted to the data to test whether caffeine’s effect on RTs was mediated by its effect on either type of P3b latencies. Results Stimulus-locked latencies showed clear evidence of mediation, with approximately a third of the effect of caffeine on RTs running through the processes measured by stimulus-locked latencies. Caffeine did not affect response-locked latencies, so could not mediate the effect. Discussion These findings are consistent with caffeine’s effect on RTs being a result of its effect on perceptual-attentional processes, rather than motor processes. The study is the first to apply mediation analysis to single-trial P3b data and this technique holds promise for mental chronometric studies into the effects of psychopharmacological agents. The R code for performing the single trial analysis and mediation analysis are included as supplementary materials

    Enhanced stimulus-induced gamma activity in humans during propofol-induced sedation.

    Get PDF
    Stimulus-induced gamma oscillations in the 30-80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography, using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation generation in humans

    The Thalamus and Brainstem Act As Key Hubs in Alterations of Human Brain Network Connectivity Induced by Mild Propofol Sedation

    No full text
    Despite their routine use during surgical procedures, no consensus has yet been reached on the precise mechanisms by which hypnotic anesthetic agents produce their effects. Molecular, animal and human studies have suggested disruption of thalamocortical communication as a key component of anesthetic action at the brain systems level. Here, we used the anesthetic agent, propofol, to modulate consciousness and to evaluate differences in the interactions of remote neural networks during altered consciousness. We investigated the effects of propofol, at a dose that produced mild sedation without loss of consciousness, on spontaneous cerebral activity of 15 healthy volunteers using functional magnetic resonance imaging (fMRI), exploiting oscillations (<0.1 Hz) in blood oxygenation level-dependent signal across functionally connected brain regions. We considered the data as a graph, or complex network of nodes and links, and used eigenvector centrality (EC) to characterize brain network properties. The EC mapping of fMRI data in healthy humans under propofol mild sedation demonstrated a decrease of centrality of the thalamus versus an increase of centrality within the pons of the brainstem, highlighting the important role of these two structures in regulating consciousness. Specifically, the decrease of thalamus centrality results from its disconnection from a widespread set of cortical and subcortical regions, while the increase of brainstem centrality may be a consequence of its increased influence, in the mildly sedated state, over a few highly central cortical regions key to the default mode network such as the posterior and anterior cingulate cortices
    corecore