1,423 research outputs found

    Reversible photoswitching of the DNA-binding properties of styrylquinolizinium derivatives through photochromic [2+2] cycloaddition and cycloreversion

    Get PDF
    Koelsch S, Ihmels H, Mattay J, Sewald N, Patrick BO. Reversible photoswitching of the DNA-binding properties of styrylquinolizinium derivatives through photochromic [2+2] cycloaddition and cycloreversion. Beilstein Journal of Organic Chemistry. 2020;16:111-124.It was demonstrated that styrylquinolizinium derivatives may be applied as photoswitchable DNA ligands. At lower ligand:DNA ratios (<= 1.5), these compounds bind to duplex DNA by intercalation, with binding constants ranging from K-b = 4.1 x 10(4) M to 2.6 x 10(5) M (four examples), as shown by photometric and fluorimetric titrations as well as by CD and LD spectroscopic analyses. Upon irradiation at 450 nm, the methoxy-substituted styrylquinolizinium derivatives form the corresponding syn head-to-tail cyclobutanes in a selective [2 + 2] photocycloaddition, as revealed by X-ray diffraction analysis of the reaction products. These photodimers bind to DNA only weakly by outside-edge association, but they release the intercalating monomers upon irradiation at 315 nm in the presence of DNA. As a result, it is possible to switch between these two ligands and likewise between two different binding modes by irradiation with different excitation wavelengths

    Photocontrolled DNA minor groove interactions of imidazole/pyrrole polyamides

    Get PDF
    Müller S, Paulus J, Mattay J, Ihmels H, Dodero VI, Sewald N. Photocontrolled DNA minor groove interactions of imidazole/pyrrole polyamides. Beilstein Journal of Organic Chemistry. 2020;16:60-70.Azobenzenes are photoswitchable molecules capable of generating significant structural changes upon E-to-Z photoisomerization in peptides or small molecules, thereby controlling geometry and functionality. E-to-Z photoisomerization usually is achieved upon irradiation at 350 nm (pi-pi* transition), while the Z-to-E isomerization proceeds photochemically upon irradiation at >400 nm (n-pi* transition) or thermally. Photoswitchable compounds have frequently been employed as modules, e.g., to control protein-DNA interactions. However, their use in conjunction with minor groove-binding imidazole/pyrrole (Im/Py) polyamides is yet unprecedented. Dervan-type Im/Py polyamides were equipped with an azobenzene unit, i.e., 3-(3-(aminomethyl)phenyl)azophenylacetic acid, as the linker between two Im/Py polyamide strands. Only the (Z)-azobenzene-containing polyamides bound to the minor groove of double-stranded DNA hairpins. Photoisomerization was exemplarily evaluated by H-1 NMR experiments, while minor groove binding of the (Z)-azobenzene derivatives was proven by CD titration experiments. The resulting induced circular dichroism (ICD) bands of the bound ligands, together with the photometric determination of the dsDNA melting temperature, revealed a significant stabilization of the DNA upon association with the ligand. The (Z)-azobenzene acted as a building block inducing a reverse turn, which favored hydrogen bonds between the pyrrole/imidazole amide and the DNA bases. In contrast, the E-configured polyamides did not induce any ICD characteristic for minor groove binding. The incorporation of the photoswitchable azobenzene unit is a promising strategy to obtain photoswitchable Im/Py hairpin polyamides capable of interacting with the dsDNA minor groove only in the Z-configuration

    Age-related alterations in default mode network: Impact on working memory performance

    Get PDF
    The default mode network (DMN) is a set of functionally connected brain regions which shows deactivation (task-induced deactivation, TID) during a cognitive task. Evidence shows an age-related decline in task-load-related modulation of the activity within the DMN during cognitive tasks. However, the effect of age on the functional coupling within the DMN and their relation to cognitive performance has hitherto been unexplored. Using functional magnetic resonance imaging, we investigated functional connectivity within the DMN in older and younger subjects during a working memory task with increasing task load. Older adults showed decreased connectivity and ability to suppress low frequency oscillations of the DMN. Additionally, the strength of the functional coupling of posterior cingulate (pCC) with medial prefrontal cortex (PFC) correlated positively with performance and was lower in older adults. pCC was also negatively coupled with task-related regions, namely the dorsolateral PFC and cingulate regions. Our results show that in addition to changes in canonical task-related brain regions, normal aging is also associated with alterations in the activity and connectivity of brain regions within the DMN. These changes may be a reflection of a deficit in cognitive control associated with advancing age that results in deficient resource allocation to the task at hand

    Age-related alterations in simple declarative memory and the effect of negative stimulus valence

    Get PDF
    Healthy aging has been shown to modulate the neural circuitry underlying simple declarative memory; however, the functional impact of negative stimulus valence on these changes has not been fully investigated. Using BOLD fMRI, we explored the effects of aging on behavioral performance, neural activity, and functional coupling during the encoding and retrieval of novel aversive and neutral scenes. Behaviorally, there was a main effect of valence with better recognition performance for aversive greater than neutral stimuli in both age groups. There was also a main effect of age with better recognition performance in younger participants compared to older participants. At the imaging level, there was a main effect of valence with increased activity in the medial-temporal lobe (amygdala and hippocampus) during both encoding and retrieval of aversive relative to neutral stimuli. There was also a main effect of age with older participants showing decreased engagement of medial-temporal lobe structures and increased engagement of prefrontal structures during both encoding and retrieval sessions. Interestingly, older participants presented with relatively decreased amygdalar-hippocampal coupling and increased amygdalar-prefrontal coupling when compared to younger participants. Furthermore, older participants showed increased activation in prefrontal cortices and decreased activation in the amygdala when contrasting the retrieval of aversive and neutral scenes. These results suggest that although normal aging is associated with a decline in declarative memory with alterations in the neural activity and connectivity of brain regions underlying simple declarative memory, memory for aversive stimuli is relatively better preserved than for neutral stimuli, possibly through greater compensatory prefrontal cortical activit

    Neural correlates of probabilistic category learning in patients with schizophrenia

    Get PDF
    Functional neuroimaging studies of probabilistic category learning in healthy adults report activation of cortical-striatal circuitry. Based on previous findings of normal learning rate concurrent with an overall performance deficit in patients with schizophrenia, we hypothesized that relative to healthy adults, patients with schizophrenia would display preserved caudate nucleus and abnormal prefrontal cortex activation during probabilistic category learning. Forty patients with schizophrenia receiving antipsychotic medication and 25 healthy participants were assessed on interleaved blocks of probabilistic category learning and control tasks while undergoing blood oxygenation level-dependent functional magnetic resonance imaging. In addition to the whole sample of patients with schizophrenia and healthy adults, a subset of patients and healthy adults matched for good learning was also compared. In the whole sample analysis, patients with schizophrenia displayed impaired performance in conjunction with normal learning rate relative to healthy adults. The matched comparison of patients and healthy adults classified as good learners revealed greater caudate and dorsolateral prefrontal cortex activity in the healthy adults and greater activation in a more rostral region of the dorsolateral prefrontal, cingulate, parahippocampal and parietal cortex in patients. These results demonstrate that successful probabilistic category learning can occur in the absence of normal frontal-striatal function. Based on analyses of the patients and healthy adults matched on learning and performance, a minority of patients with schizophrenia achieve successful probabilistic category learning and performance levels through differential activation of a circumscribed neural network which suggests a compensatory mechanism in patients showing successful learning. Copyright © 2009 Society for Neuroscience

    Age-Related Attenuation of Dominant Hand Superiority

    Get PDF
    The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities

    Statistical Analysis of Functional MRI Data in the Wavelet Domain

    Get PDF
    The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities. Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing

    Sequence Skill Acquisition and Off-Line Learning in Normal Aging

    Get PDF
    It is well known that certain cognitive abilities decline with age. The ability to form certain new declarative memories, particularly memories for facts and events, has been widely shown to decline with advancing age. In contrast, the effects of aging on the ability to form new procedural memories such as skills are less well known, though it appears that older adults are able to acquire some new procedural skills over practice. The current study examines the effects of normal aging on procedural memory more closely by comparing the effects of aging on the encoding or acquisition stage of procedural learning versus its effects on the consolidation, or between-session stage of procedural learning. Twelve older and 14 young participants completed a sequence-learning task (the Serial Reaction Time Task) over a practice session and at a re-test session 24 hours later. Older participants actually demonstrated more sequence skill during acquisition than the young. However, older participants failed to show skill improvement at re-test as the young participants did. Age thus appears to have a differential effect upon procedural learning stages such that older adults' skill acquisition remains relatively intact, in some cases even superior, compared to that of young adults, while their skill consolidation may be poorer than that of young adults. Although the effect of normal aging on procedural consolidation remains unclear, aging may actually enhance skill acquisition on some procedural tasks
    • …
    corecore