81 research outputs found

    No downregulation of immune function during breeding in two year-round breeding bird species in an equatorial East African environment

    Get PDF
    Some equatorial environments exhibit substantial within-location variation in environmental conditions throughout the year and yet have year-round breeding birds. This implies that breeding in such systems are potentially unrelated to the variable environmental conditions. By breeding not being influenced by environmental conditions, we become sure that any differences in immune function between breeding and non-breeding birds do not result from environmental variation, therefore allowing for exclusion of the confounding effect of variation in environmental conditions. This create a unique opportunity to test if immune function is down-regulated during reproduction compared to non-breeding periods. We compared the immune function of sympatric male and female chick-feeding and non-breeding red-capped Calandrella cinerea and rufous-naped larks Mirafra africana in equatorial East Africa. These closely-related species occupy different niches and have different breeding strategies in the same grassland habitat. Red-capped larks prefer areas with short grass or almost bare ground, and breed during low rainfall periods. Rufous-naped larks prefer areas of tall grass and scattered shrubs and breed during high rainfall. We measured the following immune indices: nitric oxide, haptoglobin, agglutination and lysis, and measured total monthly rain, monthly average minimum (T-min) and maximum (T-max) temperatures. Contrary to our predictions, we found no down-regulation of immune function during breeding; breeding birds had higher nitric oxide than non-breeding ones in both species, while the other three immune indices did not differ between breeding phases. Red-capped larks had higher nitric oxide concentrations than Rufous-naped larks, which in turn had higher haptoglobin levels than red-capped larks. T-max was higher during breeding than during non-breeding for red-capped larks only, suggesting potential confounding effect of T-max on the comparison of immune function between breeding and non-breeding birds for this species. Overall, we conclude that in the two year-round breeding equatorial larks, immune function is not down-regulated during breeding

    Monoclonal antibodies directed to fucoidan preparations from brown algae

    Get PDF
    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance

    Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    Get PDF
    International audienceIncreasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system

    The genome of the seagrass <i>Zostera marina</i> reveals angiosperm adaptation to the sea

    Get PDF
    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants

    The <i>Ectocarpus</i> genome and the independent evolution of multicellularity in brown algae

    Get PDF
    Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related1. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1).We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic2 approaches to explore these and other aspects of brown algal biology further

    Synchronization of cytoplasmic and transferred mitochondrial ribosomal protein gene expression in land plants is linked to Telo-box motif enrichment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chloroplasts and mitochondria evolved from the endosymbionts of once free-living eubacteria, and they transferred most of their genes to the host nuclear genome during evolution. The mechanisms used by plants to coordinate the expression of such transferred genes, as well as other genes in the host nuclear genome, are still poorly understood.</p> <p>Results</p> <p>In this paper, we use nuclear-encoded chloroplast (cpRPGs), as well as mitochondrial (mtRPGs) and cytoplasmic (euRPGs) ribosomal protein genes to study the coordination of gene expression between organelles and the host. Results show that the mtRPGs, but not the cpRPGs, exhibit strongly synchronized expression with euRPGs in all investigated land plants and that this phenomenon is linked to the presence of a <it>telo</it>-box DNA motif in the promoter regions of mtRPGs and euRPGs. This motif is also enriched in the promoter regions of genes involved in DNA replication. Sequence analysis further indicates that mtRPGs, in contrast to cpRPGs, acquired <it>telo</it>-box from the host nuclear genome.</p> <p>Conclusions</p> <p>Based on our results, we propose a model of plant nuclear genome evolution where coordination of activities in mitochondria and chloroplast and other cellular functions, including cell cycle, might have served as a strong selection pressure for the differential acquisition of <it>telo</it>-box between mtRPGs and cpRPGs. This research also highlights the significance of physiological needs in shaping transcriptional regulatory evolution.</p

    A community perspective on the concept of marine holobionts: Current status, challenges, and future directions

    Get PDF
    Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever
    • 

    corecore