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ABSTRACT
Host-microbe interactions play crucial roles in marine ecosystems. However, we still
have very little understanding of the mechanisms that govern these relationships,
the evolutionary processes that shape them, and their ecological consequences. The
holobiont concept is a renewed paradigm in biology that can help to describe and
understand these complex systems. It posits that a host and its associated microbiota
with which it interacts, form a holobiont, and have to be studied together as a coherent
biological and functional unit to understand its biology, ecology, and evolution. Here
we discuss critical concepts and opportunities inmarine holobiont research and identify
key challenges in the field. We highlight the potential economic, sociological, and
environmental impacts of the holobiont concept in marine biological, evolutionary,
and environmental sciences. Given the connectivity and the unexplored biodiversity
specific tomarine ecosystems, a deeper understanding of such complex systems requires
further technological and conceptual advances, e.g., the development of controlled
experimental model systems for holobionts from all major lineages and the modeling
of (info)chemical-mediated interactions between organisms. Here we propose that one
significant challenge is to bridge cross-disciplinary research on tractable model systems
in order to address key ecological and evolutionary questions. This first step is crucial to
decipher the main drivers of the dynamics and evolution of holobionts and to account
for the holobiont concept in applied areas, such as the conservation, management, and
exploitation of marine ecosystems and resources, where practical solutions to predict
and mitigate the impact of human activities are more important than ever.

Subjects Ecology, Marine Biology, Microbiology
Keywords Evolution, Ecosystem services, Symbiosis, Host-microbiota interactions, Marine
holobionts, Dysbiosis

RATIONALE, INTENDED AUDIENCE, AND SURVEY
METHODOLOGY
The idea of considering organisms in connection with the complex microbial communities
they are associated with is a concept rapidly gaining in importance in a wide field of life and
environmental sciences. It goes along with an increasing awareness that many organisms
depend on complex interactions with their symbiotic microbiota for different aspects of
their life, even though the extent of dependencies may vary strongly (Hammer, Sanders &
Fierer, 2019). The host and its associated microbiota are considered a single ecological unit,
the holobiont. This implies a real paradigm shift. Marine environments harbor most of the
diversity of life in terms of the number of lineages that coexist, and the constant presence
of surrounding water as a potential carrier of metabolites but also microbes facilitates tight
interactions between these lineages, making a ‘‘holistic’’ view of these environments and
the organisms that inhabit them particularly important.
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This paper is intended for both scientists seeking an overview of recent developments in
marine holobiont research and as a reference for policymakers. We review the state of the
art in the field research and identify key challenges, possible solutions, and opportunities
in the field. Our work is based on the result of a foresight workshop hosted in March 2018,
which brought together an interdisciplinary group of 31 scientists. These scientists were
selected for their complementary expertise in philosophy, evolution, computer sciences,
marine biology, ecology, chemistry, microscopy, and microbiology, as well as for their
work with a wide range of different model systems from phytoplankton, via macroalgae,
corals, and sponges, to bacterial communities of hydrothermal vents. After a three-day
brainstorming session, the resulting ideas and discussions were divided into different topics,
and groups of two or more scientists were appointed to draft each section, each based on
their expertise in the field, their knowledge of the literature, and literature searches. The
assembled paper was then corrected and completed by the entire consortium.

MARINE HOLOBIONTS FROM THEIR ORIGINS TO THE
PRESENT
The history of the holobiont concept
Holism is a philosophical notion first proposed by Aristotle in the 4th century BC. It states
that systems should be studied in their entirety, with a focus on the interconnections
between their various components rather than on the individual parts (Met. Z.17,
1041b11–33). Such systems have emergent properties that result from the behavior of
a system that is ‘‘larger than the sum of its parts’’. However, a major shift away from holism
occurred during the Age of ‘‘Enlightenment’’ when the dominant thought summarized as
‘‘dissection science’’ was to focus on the smallest component of a system as a means of
understanding it.

The idea of holism started to regain popularity in biology when the endosymbiosis theory
was first proposed by Mereschkowski (1905) and further developed by Wallin (1925). Still
accepted today, this theory posits a single origin for eukaryotic cells through the symbiotic
assimilation of prokaryotes to form first mitochondria and later plastids (the latter through
several independent symbiotic events) via phagocytosis (reviewed in Archibald, 2015).
These ancestral and founding symbiotic events, which prompted the metabolic and cellular
complexity of eukaryotic life, most likely occurred in the ocean (Martin et al., 2008).

Despite the general acceptance of the endosymbiosis theory, the term ‘‘holobiosis’’
or ‘‘holobiont’’ did not immediately enter the scientific vernacular. It was coined
independently by Meyer-Abich (1943) (Baedke, Fábregas-Tejeda & Nieves Delgado, 2020)
and by Lynn Margulis in 1990, who proposed that evolution has worked mainly through
symbiosis-driven leaps that merged organisms into new forms, referred to as ‘‘holobionts’’,
and only secondarily through gradual mutational changes (Margulis & Fester, 1991;
O’Malley, 2017). However, the concept was not widely used until it was co-opted by coral
biologists over a decade later. Corals and dinoflagellate algae of the family Symbiodiniaceae
are one of the most iconic examples of symbioses found in nature; most corals are
incapable of long-term survival without the products of photosynthesis provided by their
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endosymbiotic algae. Rohwer et al. (2002) were the first to use the word ‘‘holobiont’’ to
describe a unit of selection sensu Margulis (Rosenberg et al., 2007b) for corals, where the
holobiont comprised the cnidarian polyp (host), algae of the family Symbiodiniaceae,
various ectosymbionts (endolithic algae, prokaryotes, fungi, other unicellular eukaryotes),
and viruses.

Although initially driven by studies of marine organisms, much of the research on the
emerging properties and significance of holobionts has since been carried out in other
fields of research: the microbiota of the rhizosphere of plants or the animal gut became
predominant models and have led to an ongoing paradigm shift in agronomy and medical
sciences (Bulgarelli et al., 2013; Shreiner, Kao & Young, 2015; Faure, Simon & Heulin, 2018).
Holobionts occur in terrestrial and aquatic habitats alike, and several analogies between
these ecosystems can be made. For example, in all of these habitats, interactions within
and across holobionts such as induction of chemical defenses, nutrient acquisition, or
biofilm formation are mediated by chemical cues and signals in the environment, dubbed
infochemicals (Loh et al., 2002; Harder et al., 2012; Rolland et al., 2016; Saha et al., 2019).
Nevertheless, we can identify twomajor differences between terrestrial and aquatic systems.
First, the physicochemical properties of water result in higher chemical connectivity and
signaling between macro- and micro-organisms in aquatic or moist environments. In
marine ecosystems, carbon fluxes also appear to be swifter and trophicmodesmore flexible,
leading to higher plasticity of functional interactions across holobionts (Mitra et al., 2013).
Moreover, dispersal barriers are usually lower, allowing for faster microbial community
shifts in marine holobionts (Kinlan & Gaines, 2003; Burgess et al., 2016; Martin-Platero
et al., 2018). Secondly, phylogenetic diversity at broad taxonomic scales (i.e., supra-
kingdom, kingdom and phylum levels), is higher in aquatic realms compared to land,
with much of the aquatic diversity yet to be uncovered (De Vargas et al., 2015; Thompson
et al., 2017), especially marine viruses (Middelboe & Brussaard, 2017; Gregory et al., 2019).
The recent discovery of such astonishing marine microbial diversity in parallel with the
scarcity of marine holobiont research suggest a high potential for complex cross-lineage
interactions yet to be explored in marine holobionts (Fig. 1).

The boundaries of holobionts are usually delimited by a physical gradient, which
corresponds to the area of local influence of the host, e.g., in unicellular algae the
so-called phycosphere (Seymour et al., 2017). However, they may also be defined in
a context-dependent way as a ‘‘Russian Matryoshka doll’’, setting the boundaries of the
holobiont depending on the interactions and biological functions that are being considered.
Thus holobionts may encompass all levels of host-symbiont associations from intimate
endosymbiosis with a high degree of co-evolution up to the community and ecosystem
level; a concept referred to as ‘‘nested ecosystems’’ (Fig. 2;McFall-Ngai et al., 2013; Pita et
al., 2018).

Such a conceptual perspective raises fundamental questions not only regarding the
interaction between the different components of holobionts and processes governing their
dynamics, but also of the relevant units of selection and the role of co-evolution. For
instance, plant and animal evolution involves new functions co-constructed by members
of the holobiont or elimination of functions redundant among them (Selosse, Bessis &
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Figure 1 Partners forming marine holobionts. They are widespread across the tree of life including all
kingdoms (eukaryotes, bacteria, archaea, viruses), and represent a large diversity of potential models for
exploring complex biotic interactions across lineages. Plain lines correspond to holobionts referred to in
the present manuscript. Dashed lines are examples of potential interactions. Photo credits: Archaeplas-
tida –Catherine Leblanc, Ulisse Cardini; Excavata - Roscoff Culture Collection (http://roscoff-culture-
collection.org/rcc-strain-details/1065), Attribution 4.0 International (CC BY 4.0); Amoebozoa - Roscoff
Culture Collection (http://roscoff-culture-collection.org/rcc-strain-details/1067), Attribution 4.0 Inter-
national (CC BY 4.0); Cryptophyta –Roscoff Culture Collection (http://roscoff-culture-collection.org/
rcc-strain-details/1998), Attribution 4.0 International (CC BY 4.0); Stramenopila –Catherine Leblanc, Si-
mon M Dittami;Alveolata –Allison Lewis (https://commons.wikimedia.org/wiki/File:Symbiodinium.png),
Creative Commons Attribution-Share Alike 4.0 International license; Rhizaria –Fabrice Not; Haptophyta
–Alison R. Taylor (https://en.wikipedia.org/wiki/Emiliania_huxleyi#/media/Datei:Emiliania_huxleyi_
coccolithophore_(PLoS).png), Attribution 2.5 Generic (CC BY 2.5); Opisthonkonta –HeikeM (https://fr.
wikipedia.org/wiki/R%C3%A9cif_corallien_d%27eau_froide#/media/Fichier:Joon1.jpg, Public Domain),
NOAA Photo Library (https://en.wikipedia.org/wiki/Sea_anemone#/media/File:Actinoscyphia_aurelia_
1.jpg, Public Domain), Squid (Chris Frazee, Margaret McFall-Ngai, https://en.wikipedia.org/wiki/Squid#
/media/File:Euprymna_scolopes_-_image.pbio.v12.i02.g001.png, Attribution 4.0 International (CC BY
4.0)); Bacteria –Marinobacter (Astrid Gärdes, Eva Kaeppel, Aamir Shehzad, Shalin Seebah, Hanno Teel-
ing, Pablo Yarza, Frank Oliver Glöckner, Hans-Peter Grossart, Matthias S. Ullrich, https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3035377/figure/f1/, Attribution 2.5 Generic (CC BY 2.5)), (continued on next
page. . . )

Full-size DOI: 10.7717/peerj.10911/fig-1
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Figure 1 (. . .continued)
Synecococcus (Masur, https://en.wikipedia.org/wiki/Synechococcus#/media/Datei:Synechococcus_
PCC_7002_BF.jpg, Public Domain), Vibrio fischeri (Alan Cann, https://www.flickr.com/photos/
ajc1/252308050/, Attribution-NonCommercial 2.0 Generic (CC BY-NC 2.0)), Hyphomonas
- Holomarine consortium (Simon M Dittami);Archaea –Halobacterium (NASA, https:
//commons.wikimedia.org/wiki/File:Halobacteria.jpg, Public Domain), Sulfolobus (Xiangyux,
https://de.wikipedia.org/wiki/Archaeen#/media/Datei:RT8-4.jpg, Public Domain);Viruses –
Matthew B Sullivan, Maureen L Coleman, Peter Weigele, Forest Rohwer, Sallie W Chisholm
(https://en.wikipedia.org/wiki/Cyanophage#/media/File:Cyanophages.png), Attribution 2.5 Generic
(CC BY 2.5).

Figure 2 Schematic view of the ‘‘Russian Doll’’ complexity and dynamics of holobionts, according
to diverse spatiotemporal scales. The host (blue circles), and associated microbes (all other shapes) in-
cluding bacteria and eukaryotes that may be inside (i.e., endosymbiotic) or outside the host (i.e., ectosym-
biotic) are connected by either beneficial (solid orange lines), neutral (solid blue lines) or pathogenic
(dashed black lines) interactions, respectively. Changes from beneficial or neutral to pathogenic interac-
tions are typical cases of dysbiosis. The different clusters can be illustrated by the following examples: 1,
a model holobiont in a stable physiological condition (e.g., in controlled laboratory condition); 2 and 3,
holobionts changing during their life cycle or subjected to stress conditions—examples of vertically trans-
mitted microbes are indicated by light blue arrows; 4 and 5, marine holobionts in the context of global
sampling campaigns or long-term time series—examples of horizontal transmission of microbes and
holobionts are illustrated by pink arrows.

Full-size DOI: 10.7717/peerj.10911/fig-2

Pozo, 2014), and it is likely that these processes are also relevant in marine holobionts.
Rosenberg et al. (2010) and Rosenberg & Zilber-Rosenberg (2018) argued that all animals
and plants can be considered holobionts, and thus advocate the hologenome theory
of evolution, suggesting that natural selection acts at the level of the holobiont and its
hologenome. This interpretation of Margulis’ definition of a ‘‘holobiont’’ considerably
broadened fundamental concepts in evolution and speciation and has not been free of
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criticism (Douglas & Werren, 2016), especially when applied at the community or ecosystem
level (Moran & Sloan, 2015). More recently, it has been shown that species that interact
indirectly with the host can also be important in shaping coevolution within mutualistic
multi-partner assemblages (Guimarães et al., 2017). Thus, the holobiont concept and
the underlying complexity of holobiont systems should be better defined and further
considered when addressing evolutionary and ecological questions.

Marine holobiont models
Today, an increasing number of marine model organisms, both unicellular and
multicellular, are being used in holobiont research (Fig. 1), often with different emphasis
and levels of experimental control, but altogether covering a large range of scientific
topics. Here, we provide several illustrative examples of this diversity and some of the
insights they have provided, distinguishing between ‘‘environmental models’’, chosen for
their environmental, evolutionary, economical, or ecological importance, or for historical
reasons, but in which microbiome composition is not or only partially controlled, and
‘‘controlled bi- or trilateral associations’’, which can be kept separately from their symbionts
under laboratory conditions and are particularly useful to develop functional approaches
and study the mechanisms of symbiotic interactions.

Environmental models: Within the animal kingdom, and in addition to corals and
sponges, which will be discussed below, the discovery of deep-sea hydrothermal vents
revealed symbioses of animals with chemosynthetic bacteria that have later been found
in many other marine ecosystems (Dubilier, Bergin & Lott, 2008; Rubin-Blum et al., 2019)
and frequently exhibit high levels of metabolic and taxonomic diversity (Duperron et al.,
2008; Petersen et al., 2016; Ponnudurai et al., 2017). In the SAR supergroup, in addition to
well-known models such as diatoms, radiolarians and foraminiferans, both heterotrophic
protist dwellers harboring endosymbiotic microalgae, are emerging as ecological models for
unicellular photosymbiosis due to their ubiquitous presence in the world’s oceans (Decelle,
Colin & Foster, 2015;Not et al., 2016). Among the haptophytes, the cosmopolitan Emiliania
huxleyi, promoted by associated bacteria (Seyedsayamdost et al., 2011; Segev et al., 2016),
produces key intermediates in the carbon and sulfur biogeochemical cycles, making it an
important model phytoplankton species. Finally, within the Archaeplastida, the siphonous
green alga Bryopsis is an example of a model that harbors heterotrophic endosymbiotic
bacteria, some of which exhibit patterns of co-evolution with their hosts (Hollants et al.,
2013).

Controlled bi- or trilateral associations: Only a few models, covering a small part of
the overall marine biodiversity, are currently being cultivated ex-situ and can be used in
fully controlled experiments, where they can be cultured aposymbiotically. The flatworm
Symsagittifera (= Convoluta) roscoffensis (Arboleda et al., 2018), the sea anemone Exaiptasia
(Baumgarten et al., 2015; Wolfowicz et al., 2016), the upside-down jellyfish Cassiopea
(Ohdera et al., 2018), and their respective intracellular green and dinoflagellate algae
have, in addition to corals, become models for fundamental research on evolution of
metazoan-algal photosymbiosis. In particular, the sea anemone Exaiptasia has been used to
explore photobiology disruption and restoration of cnidarian symbioses (Lehnert, Burriesci
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& Pringle, 2012). The Vibrio-squid model provides insights into the effect of microbiota
on animal development, circadian rhythms, and immune systems (McFall-Ngai, 2014).
The unicellular green alga Ostreococcus, an important marine primary producer, has been
shown to exchange vitamins with specific associated bacteria (Cooper et al., 2019). The
green macroalga Ulva mutabilis has enabled the exploration of bacteria-mediated growth
and morphogenesis including the identification of original chemical interactions in the
holobiont (Wichard, 2015; Kessler et al., 2018). Although the culture conditions in these
highly-controlled model systems differ from the natural environment, these systems are
essential to gain elementary mechanistic understanding of the functioning, the roles, and
the evolution of marine holobionts.

The influence of marine holobionts on ecological processes
Work on model systems has demonstrated that motile and macroscopic marine holobionts
can act as dissemination vectors for geographically restricted microbial taxa. Pelagic
mollusks or vertebrates are textbook examples of high dispersal capacity organisms (e.g.,
against currents and through stratified water layers). It has been estimated that fish and
marine mammals may enhance the original dispersion rate of their microbiota by a factor
of 200 to 200,000 (Troussellier et al., 2017) and marine birds may even act as bio-vectors
across ecosystem boundaries (Bouchard Marmen et al., 2017). This host-driven dispersal
of microbes can include non-native or invasive species as well as pathogens (Troussellier
et al., 2017).

A related ecological function of holobionts is their potential to sustain rare species. Hosts
provide an environment that favors the growth of specific microbial communities distinct
from the surrounding environment (including rare microbes). They may, for instance,
provide a nutrient-rich niche in the otherwise nutrient-poor surroundings (Smriga, Sandin
& Azam, 2010; Webster et al., 2010; Burke et al., 2011a; Burke et al., 2011b; Chiarello et al.,
2018).

Lastly, biological processes regulated by microbes are important drivers of global
biogeochemical cycles (Falkowski, Fenchel & Delong, 2008; Madsen, 2011; Anantharaman
et al., 2016). In the open ocean, it is estimated that symbioses with the cyanobacterium
UCYN-A contribute ∼20% to total N2 fixation (Thompson et al., 2012; Martínez-Pérez
et al., 2016). In benthic systems, sponges and corals may support entire ecosystems via
their involvement in nutrient cycling thanks to their microbial partners (Raina et al., 2009;
Fiore et al., 2010; Cardini et al., 2015; Pita et al., 2018), functioning as sinks and sources of
nutrients. In particular the ‘‘sponge loop’’ recycles dissolved organic matter and makes it
available to higher trophic levels in the form of detritus (De Goeij et al., 2013; Fiore et al.,
2010; Rix et al., 2017). In coastal sediments, bivalves hosting methanogenic archaea have
been shown to increase the benthic methane efflux by a factor of up to eight, potentially
accounting for 9.5% of total methane emissions from the Baltic Sea (Bonaglia et al.,
2017). Such impressive metabolic versatility is accomplished because of the simultaneous
occurrence of disparate biochemical machineries (e.g., aerobic and anaerobic pathways)
in individual symbionts, providing new metabolic abilities to the holobiont, such as the
synthesis of specific essential amino acids, photosynthesis, or chemosynthesis (Dubilier,
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Bergin & Lott, 2008; Venn, Loram & Douglas, 2008). Furthermore, the interaction between
host and microbiota can potentially extend the metabolic capabilities of a holobiont in
a way that augments its resilience to environmental changes (Berkelmans & Van Oppen,
2006; Gilbert et al., 2010; Dittami et al., 2016; Shapira, 2016; Godoy et al., 2018), or allow it
to cross biotope boundaries (e.g., Woyke et al., 2006) and colonize extreme environments
(Bang et al., 2018). Holobionts thus contribute to marine microbial diversity and possibly
resilience in the context of global environmental changes (Troussellier et al., 2017) and it
is paramount to include the holobiont concept in predictive models that investigate the
consequences of human impacts on the marine realm and its biogeochemical cycles.

CHALLENGES AND OPPORTUNITIES IN MARINE
HOLOBIONT RESEARCH
Marine holobiont assembly and regulation
Two critical challenges partially addressed by using model systems are (1) to decipher
the factors determining holobiont composition and (2) to elucidate the impacts and roles
of the different partners in these complex systems over time. Some marine organisms
such as bivalves transmit part of the microbiota maternally (Bright & Bulgheresi, 2010;
Funkhouser & Bordenstein, 2013). In other marine holobionts, vertical transmission may be
weak and inconsistent, whereas mixed modes of transmission (vertical and horizontal)
or intermediate modes (pseudo-vertical, where horizontal acquisition frequently involves
symbionts of parental origin) are more common (Björk et al., 2019). Identifying the factors
shaping holobiont composition and understanding their evolution is highly relevant
for marine organisms given that most marine hosts display a high specificity for their
microbiota and even patterns of phylosymbiosis (Brooks et al., 2016; Kazamia et al., 2016;
Pollock et al., 2018), despite a highly connected and microbe-rich environment.

During microbiota transmission (whether vertical or horizontal), selection by the
host and/or by other components of the microbiome, is a key process in establishing or
maintaining a holobiont microbial community that is distinct from the environment.
The immune system of the host, e.g., via the secretion of specific antimicrobial peptides
(Franzenburg et al., 2013; Zheng, Liwinski & Elinav, 2020), is one way of performing this
selection in both marine and terrestrial holobionts.

Another way of selecting a holobiont microbial community is by chemically mediated
microbial gardening. This concept has been demonstrated for land plants, where
root exudates manipulate microbiome composition (Lebeis et al., 2015). In marine
environments, the phylogenetic diversity of hosts and symbionts suggests both conserved
andmarine-specific chemical interactions, but studies are still in their infancy. For instance,
seaweeds can chemically garden beneficialmicrobes, facilitating normalmorphogenesis and
increasing disease resistance (Kessler et al., 2018; Saha & Weinberger, 2019), and seaweeds
and corals structure their surface-associated microbiome by producing chemo-attractants
and anti-bacterial compounds (Harder et al., 2012; Ochsenkühn et al., 2018). There are
fewer examples of chemical gardening in unicellular hosts, but it seems highly likely that
similar processes are in place (Gribben et al., 2017; Cirri & Pohnert, 2019).
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In addition to selection, ecological drift, dispersal and evolutionary diversification have
been proposed as key processes in community assembly, but are difficult to estimate in
microbial communities (Nemergut et al., 2013). The only data currently at our disposal to
quantify these processes are the diversity and distribution of microbes. Considering the
high connectivity of aquatic environments, differences in marine microbial communities
are frequently attributed to a combination of selection and drift, rather than limited
dispersal (e.g., Burke et al., 2011a), a conclusion which, in the future, could be refined
by conceptual models developed for instance for soil microbial communities (Stegen et
al., 2013; Dini-Andreote et al., 2015). Diversification is mainly considered in the sense of
coevolution or adaptation to host selection, which may also be driven by the horizontal
acquisition of genes. However, cospeciation is challenging to prove (De Vienne et al.,
2013; Moran & Sloan, 2015) and only few studies have examined this process in marine
holobionts to date, each focused on a restricted number of actors (e.g., Peek et al., 1998;
Lanterbecq, Rouse & Eeckhaut, 2010).

Perturbations in the transmission or the recruitment of the microbiota can lead to
dysbiosis, and eventually microbial infections (Selosse, Bessis & Pozo, 2014; De Lorgeril
et al., 2018). Dysbiotic microbial communities are frequently determined by stochastic
processes and thus display higher variability in their composition than those of healthy
individuals. This observation in line with the ‘‘Anna Karenina principle’’ (Zaneveld,
McMinds & Vega Thurber, 2017), although there are exceptions to this rule (e.g.,Marzinelli
et al., 2015). A specific case of dysbiosis is the so-called ‘‘Rasputin effect’’ where benign
endosymbionts opportunistically become detrimental to the host due to processes such
as reduction in immune response under food deprivation, coinfections, or environmental
pressure (Overstreet & Lotz, 2016). Many diseases are now interpreted as the result of a
microbial imbalance and the rise of opportunistic or polymicrobial infections upon host
stress (Egan & Gardiner, 2016). For instance in reef-building corals, warming destabilizes
cnidarian-dinoflagellate associations, and some beneficial Symbiodiniacea strains switch
their physiology and sequester more resources for their own growth at the expense of the
coral host, leading to coral bleaching and even death (Baker et al., 2018).

Increasing our knowledge on the contribution of these processes to holobiont
community assembly in marine systems is a key challenge, which is of particular
urgency today in the context of ongoing global change. Moreover, understanding how
the community and functional structure of resident microbes are resilient to perturbations
remains critical to predict and promote the health of their host and the ecosystem. Yet,
the contribution of the microbiome is still missing in most quantitative models predicting
the distribution of marine macro-organisms, or additional information on biological
interactions would be required to make the former more accurate (Bell et al., 2018).

Integrating marine model systems with large-scale studies
By compiling a survey of the most important trends and challenges in the field of marine
holobiont research (Fig. 3), we identified two distinct opinion clusters: one focused on
mechanistic understanding and work with model systems whereas another targets large-
scale and heterogeneous data set analyses and predictive modeling. This illustrates that, on
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Figure 3 Mindmap of key concepts, techniques, and challenges related to marine holobionts. The ba-
sis of this map was generated during the Holomarine workshop held in Roscoff in 2018 (https://www.
euromarinenetwork.eu/activities/HoloMarine). The size of the nodes reflects the number of votes each
keyword received from the participants of the workshop (total of 120 votes from 30 participants). The two
main clusters corresponding to predictive modeling and mechanistic modeling, are displayed in purple
and turquoise, respectively. Among the intermediate nodes linking these disciplines (blue) ‘‘potential use,
management’’ was the most connected.

Full-size DOI: 10.7717/peerj.10911/fig-3

the one hand, the scientific community is interested in the establishment of models for the
identification of specific molecular interactions between marine organisms at a given point
in space and time, up to the point of synthesizing functional mutualistic communities in
vitro (Kubo et al., 2013). On the other hand, another part of the community is moving
towards global environmental sampling schemes such as the TARA Oceans expedition
(Pesant et al., 2015) or the Ocean Sampling Day (Kopf et al., 2015), and towards long-term
data series (e.g.,Wiltshire et al., 2010;Harris, 2010). What emerges as both lines of research
progress is the understanding that small-scale functional studies in the laboratory are
inconsequential unless made applicable to ecologically-relevant systems. At the same
time, and despite the recent advances in community modeling (Ovaskainen et al., 2017),
hypotheses drawn from large scale-studies remain correlative and require experimental
validation of the mechanisms driving the observed processes. We illustrate the importance
of integrating both approaches in Fig. 3, where the node related to potential applications
was perceived as a central hub at the interface between mechanistic understanding and
predictive modeling.
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A successful example merging both functional and large-scale approaches, are the root
nodules of legumes, which harbor nitrogen-fixing bacteria. In this system, the functioning,
distribution, and to some extent the evolution of these nodules, are now well understood
(Epihov et al., 2017). The integration of this knowledge into agricultural practices has led
to substantial yield improvements (e.g., Kavimandan, 1985; Alam et al., 2015). In the more
diffuse and partner-rich system of mycorrhizal symbioses between plant roots and soil
fungi, a better understanding of the interactions has also been achieved via the investigation
of environmental diversity patterns in combination with experimental culture systems with
reduced diversity (Van der Heijden et al., 2015).

We advocate the implementation of comparable efforts in marine sciences through
interdisciplinary research combining physiology, biochemistry, ecology, and computational
modeling. A key factorwill be the identification and development of tractablemodel systems
for keystone holobionts that allow hypotheses generated by large-scale data sets to be tested
in controlled experiments. Such approaches will enable the identification of organismal
interaction patterns within holobionts and nested ecosystems. In addition to answering
fundamental questions, they will help address the ecological, societal, and ethical issues that
arise from attempting to actively manipulate holobionts (e.g., in aquaculture, conservation,
and invasion) in order to enhance their resilience and protect them from the impacts of
global change (Llewellyn et al., 2014).

Emerging methodologies to approach the complexity of holobiont
partnerships
As our conceptual understanding of the different levels of holobiont organization evolves,
so does the need for multidisciplinary approaches and the development of tools and
technologies to handle the unprecedented amount of data and their integration into
dedicated ecological and evolutionary models. Here, progress is often fast-paced and
provides exciting opportunities to address some of the challenges in holobiont research.

A giant technological stride has been the explosion of affordable ‘‘omics’’ technologies
allowing molecular ecologists to move from metabarcoding (i.e., sequencing of a
taxonomic marker) to metagenomics or single-cell genomics, metatranscriptomics, and
metaproteomics, thus advancing our research from phylogenetic analyses of the holobiont
to analyses capable of making predictions about the functions carried out by different
components of the holobiont (Bowers, Doud & Woyke, 2017; Meng et al., 2018; Fig. 4).
These approaches are equally useful in marine and in terrestrial environments, but the
scarcity of well-studied lineages in the former makes the generation of good annotations
and reference databases challenging for marine biologists. Metaproteomics combined with
stable isotope fingerprinting can help study the metabolism of single lineages within the
holobiont (Kleiner et al., 2018). In parallel, meta-metabolomics approaches have advanced
over the last decades, and can be used to unravel the chemical interactions between partners.
One limitation particularly relevant to marine systems is that many compounds are often
not referenced in the mostly terrestrial-based databases, although recent technological
advances such as molecular networking and meta-mass shift chemical profiling to identify
relatives of known molecules may help to overcome this challenge (Hartmann et al., 2017).
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Figure 4 Impact of emerging methodologies (light green) on the main challenges in marine holobiont
research identified in this paper (blue). Turquoise and purple correspond to the two main clusters of ac-
tivity identified in Fig. 3.

Full-size DOI: 10.7717/peerj.10911/fig-4

A further challenge in holobiont research is to identify the origin of compounds
among the different partners of the holobionts and to determine their involvement in the
maintenance and performance of the holobiont system.Well-designed experimental setups
may help answer some of these questions (e.g.,Quinn et al., 2016), but they will also require
high levels of replication in order to represent the extensive intra-species variability found in
marine systems. Recently developed in vivo and in situ imaging techniques combined with
metabolomicomics can provide small-scale spatial and qualitative information (origin,
distribution, and concentration of a molecule or nutrient), shedding new light on the
contribution of each partner of the holobiont system at the molecular level (e.g., Geier
et al., 2020). The combination of stable isotope labelling and chemical imaging (mass
spectrometry imaging such as secondary ion mass spectrometry and matrix-assisted laser
desorption ionization, and synchrotron X-ray fluorescence) is particularly valuable in
this context, as it enables the investigation of metabolic exchange between the different
compartments of a holobiont (Musat et al., 2016; Raina et al., 2017). Finally, three-
dimensional electron microscopy may help evaluate to what extent different components
of a holobiont are physically integrated (Colin et al., 2017; Decelle et al., 2019), where
high integration is one indication of highly specific interactions. All of these techniques
can be employed in both marine and terrestrial systems, but in marine systems the high
phylogenetic diversity of organisms adds to the complexity of adapting and optimizing
these techniques.

One consequence of the development of such new methods is the feedback they provide
to improve existing models or to develop entirely new ones, e.g., by conceptualizing
holobionts as the combination of the interactions between the host and its microbiota
(Skillings, 2016; Berry & Loy, 2018), or by redefining boundaries between the holobiont
and its environment (Zengler & Palsson, 2012). Such models may incorporate metabolic
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complementarity between different components of the holobiont (Dittami, Eveillard &
Tonon, 2014; Bordron et al., 2016), e.g., enabling the prediction of testable metabolic
properties depending on holobiont composition (Burgunter-Delamare et al., 2020), or
simulate microbial communities starting from different cohorts of randomly generated
microbes for comparison with actual metatranscriptomics and/or metagenomics data
(Coles et al., 2017).

A side-effect of these recent developments has been to move holobiont research away
from laboratory culture-based experiments. We argue that maintaining or even extending
cultivation efforts, possibly via the implementation of ‘‘culturomics’’ approaches as
successfully carried out for the human gut microbiome (Lagier et al., 2012), remains
essential to capture the maximum holobiont biodiversity possible and will facilitate the
experimental testing of hypotheses and the investigation of physiological mechanisms. A
striking example of the importance of laboratory experimentation is the way germ-freemice
re-inoculated with cultivated bacteria (the so-called gnotobiotic mice) have contributed
to the understanding of interactions within the holobiont in animal health, physiology,
and behavior (e.g., Neufeld et al., 2011; Faith et al., 2014; Selosse, Bessis & Pozo, 2014). In
terms of gnotobiotic marine organisms there are several examples of microalgae that can
be cultured axenically, but gnotobiotic multicellular organisms are rare. One example
is the green alga Ulva mutabilils, which can be rendered axenic based on the movement
of its spores and has been used to study the effects of bacteria-produced morphogens
(Spoerner et al., 2012). There are also examples of gnotobiotic marine fish and mollusks
(Marques et al., 2006). However, in many cases, not all associated microorganisms can be
controlled leaving researchers with aposymbiotic cultures (i.e., cultures without the main
symbiont(s), as e.g., for the sea anemone Exaiptasia) (Lehnert et al., 2014). Innovations
in cultivation techniques for axenic (or germ-free) hosts or in microbial cultivation such
as microfluidic systems (e.g., Pan et al., 2011) and cultivation chips (Nichols et al., 2010)
may provide a way to obtain a wider spectrum of pure cultures. Yet, bringing individual
components of holobionts into cultivation can still be a daunting challenge due to the strong
interdependencies between organisms as well as the existence of yet unknown metabolic
processes that may have specific requirements. In this context, single-cell ‘‘omics’’ analyses
can provide critical information on some of the growth requirements of the organisms,
and complement approaches of high-throughput culturing (Gutleben et al., 2018).

Established cultures can then be developed into model systems, e.g., by genome
sequencing and the development of genetic tools to move towards mechanistic
understanding and experimental testing of hypothetical processes within the holobiont
derived from environmental meta ‘‘omics’’ approaches. In this context, CRISPR/cas9 is
a particularly promising tool for the genetic modification of both host and symbiont
organisms, and has been established for a few marine model systems, including diatoms,
cnidarians, annelids, echinoderms, and chordates (Momose & Concordet, 2016), although
this tool has not, to the best of our knowledge, been used so far to decipher host symbiont
interactions. ‘‘Omics’’ techniques, coupled to efforts in adapting these genetic tools, have
the potential to broaden the range of available models, enabling a better understanding
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of the functioning of marine holobionts and their interactions in marine environments
(Wichard & Beemelmanns, 2018).

Ecosystem services and holobionts in natural and managed systems
A better understanding of marine holobionts will likely have direct socio-economic
consequences for coastal marine ecosystems, estimated to provide services worth almost
50 trillion (1012) US$ per year (Costanza et al., 2014). Most of the management practices
in marine systems have so far been based exclusively on the biology and ecology of
macro-organisms. A multidisciplinary approach that provides mechanistic understanding
of habitat-forming organisms as holobionts will ultimately improve the predictability and
management of coastal ecosystems. For example, host-associated microbiota could be
integrated in biomonitoring programs as proxies used to assess the health of ecosystems.
Microbial shifts and dysbiosis constitute early warning signals that may allow managers
to predict potential impacts and intervene more rapidly and effectively (Van Oppen et al.,
2017;Marzinelli et al., 2018).

One form of intervention could be to promote positive changes of host-associated
microbiota, in ways analogous to the use of pre- and/or probiotics in humans (Singh et al.,
2013) or inoculation of beneficial microbes in plant farming (Berruti et al., 2015; Van der
Heijden et al., 2015). In macroalgae, beneficial bacteria identified from healthy seaweed
holobionts could be used as biological control agents and applied to diseased plantlets in
order to suppress the growth of bacteria detrimental to the host and to prevent disease
outbreaks in aquaculture settings. In addition to bacteria, these macroalgae frequently
host endophytic fungi that may have protective functions for the algae (Porras-Alfaro &
Bayman, 2011; Vallet et al., 2018). Host-associated microbiota could also be manipulated
to shape key phenotypes in cultured marine organisms. For example, specific bacteria
associated with microalgae may enhance algal growth (Amin et al., 2009; Kazamia, Aldridge
& Smith, 2012; Le Chevanton et al., 2013), increase lipid content (Cho et al., 2015), and
participate in the bioprocessing of algal biomass (Lenneman, Wang & Barney, 2014). More
recently, the active modification of the coral microbiota has even been advocated as a
means to boost the resilience of the holobiont to climate change (Van Oppen et al., 2015;
Peixoto et al., 2017), an approach which would, however, bear a high risk of unanticipated
and unintended side effects.

Also, holistic approaches could be implemented in the framework of fish farms. Recent
developments including integrated multi-trophic aquaculture, recirculating aquaculture,
offshore aquaculture, species selection, and breeding increase yields and reduce the resource
constraints and environmental impacts of intensive aquaculture (Klinger & Naylor, 2012).
However, the intensification of aquaculture often goes hand in handwith increased amounts
of disease outbreaks both in industry and wild stocks. A holistic microbial management
approach, e.g., by reducing the use of sterilization procedures and favoring the selection
of healthy and stable microbiota consisting of slow-growing K-strategists, may provide an
efficient solution to these latter problems, reducing the sensitivity of host to opportunistic
pathogens (De Schryver & Vadstein, 2014).
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Nevertheless, when considering their biotechnological potential, it should also be noted
that marine microbiota are likely vulnerable to anthropogenic influences and that their
deliberate engineering, introduction from exotic regions (often hidden in their hosts), or
inadvertent perturbations may have profound, and yet entirely unknown, consequences
for marine ecosystems. Terrestrial environments provide numerous examples of unwanted
plant expansions or ecosystem perturbations linked to microbiota (e.g., Dickie et al.,
2017), and cases where holobionts manipulated by human resulted in pests (e.g., Clay &
Holah, 1999) call for a cautious and ecologically-informed evaluation of holobiont-based
technologies in marine systems.

CONCLUSIONS
Marine ecosystems represent highly connected reservoirs of largely unexplored biodiversity.
They are of critical importance to feed the ever-growing world population, constitute
significant players in global biogeochemical cycles but are also threatened by human
activities and global change. In order to unravel some of the basic principles of life and its
evolution, and to protect and sustainably exploit marine natural resources, it is paramount
to consider the complex biotic interactions that shape the marine communities and
their environment. The scope of these interactions ranges from simple molecular signals
between two partners, via complex assemblies of eukaryotes, prokaryotes, and viruses
with one or several hosts, to entire ecosystems. Accordingly, current key questions in
marine holobiont research cover a wide range of topics: What are the exchanges that occur
between different partners of the holobiont, and how do they condition their survival,
dynamics and evolution? What are the cues and signals driving these exchanges? What
are the relevant units of selection and dispersal in marine holobionts? How do holobiont
systems and the interactions within them change over time and in different conditions?
How do such changes impact ecological processes? How can this knowledge be applied
to our benefit and where do we need to draw limits? Identifying and consolidating key
model systems while adapting emerging ‘‘-omics’’, imaging, culturing technologies, and
functional analyses via transgenesis (e.g., CRISPR/cas9) to them will be critical to the
development of ‘‘holobiont-aware’’ ecosystem models.

The concept of holobionts represents the fundamental understanding that all living
organisms have intimate connections with their immediate neighbors, which may impact
all aspects of their biology. We believe that this concept of holobionts will be most useful if
used with a degree of malleability, enabling us to define units of interacting organisms that
are most suitable to answer specific questions. The consideration of the holobiont concept
marks a paradigm shift in biological and environmental sciences, but only if scientists work
together as an (inter)active and transdisciplinary community bringing together holistic and
mechanistic views. This will result in tangible outcomes including a better understanding
of evolutionary and adaptive processes, improved modeling of habitats and understanding
of biogeochemical cycles, as well as application of the holobiont concept in aquaculture
and ecosystem management projects.
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Glossary

* If no other examples of the use of each term are cited below, the
definition was based on the online version of the Merriam-Webster
dictionary (2019, https://www.merriam-webster.com/) or the
Oxford dictionary (2020, https://www.lexico.com/)

Anna Karenina
principle

several factors can cause a system to fail, but only a narrow range
of parameters characterizes a working system; based on the first
sentence of Leo Tolstoy’s ‘‘Anna Karenina’’ (1878): ‘‘Happy families
are all alike; every unhappy family is unhappy in its own way’’
(Zaneveld, McMinds & Vega Thurber, 2017)

Aposymbiotic
culture

a culture of a host or a symbiont without its main symbiotic
partner(s) (e.g., Kelty & Cook, 1976). In contrast to gnotobiotic
cultures, aposymbiotic cultures are usually not germ-free

Biological control
(biocontrol)

methods for controlling diseases or pests by introducing or
supporting natural enemies of the former (see e.g., Hoitink &
Boehm, 1999)

Biomonitoring the use of living organisms as quantitative indicator for the health
of an environment or ecosystem (Holt & Miller, 2010)

Community
assembly process

the processes that shape community composition in a given habitat,
according to Nemergut et al. (2013) the four main forces relevant
for community assembly are evolutionary diversification, dispersal,
selection, and ecological drift

Dysbiosis microbial imbalance in a symbiotic community that affects the
health of the host (Egan & Gardiner, 2016)

Ecological process the processes responsible for the functioning and dynamics of
ecosystems including biogeochemical cycles, community assembly
processes, interactions between organisms, and climatic processes
(see e.g., Bennett et al., 2009)

Ecosystem services any direct or indirect benefits that humans can draw from an
ecosystem; they include provisioning services (e.g., food), regulating
services (e.g., climate), cultural services (e.g., recreation), and
supporting services (e.g., habitat formation) (Millennium Ecosystem
Assessment Panel, 2005)

Ectosymbiosis a symbiotic relationship in which symbionts live on the surface
of a host. This includes, for instance, algal biofilms or the skin
microbiome (Nardon & Charles, 2001)

Emergent property a property of complex systems (e.g., holobionts), which arises from
interactions between the components and that is not the sum of the
component properties (see e.g., Theis, 2018)

Endosymbiosis (sometimes also referred to more precisely as endocytobiosis;
Nardon & Charles, 2001) –a symbiotic relationship in which a
symbiont lives inside the host cells; prominent examples are
mitochondria, plastids/photosymbionts, or nitrogen fixing bacteria
in plant root nodules. See also ectosymbioisis
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Gnotobiosis the condition in which all organisms present in a culture can be
controlled, i.e., germ-free (axenic) organisms or organisms with a
controlled community of symbionts. Gnotobiotic individuals may
be obtained e.g., by surgical removal from the mother (vertebrates)
or by surface sterilization of seeds (plants) and subsequent handling
in a sterile environment and possible inoculation with selected
microbes (Hale, Lindsey & Hameed, 1973;Williams, 2014)

Holism the theory that parts of a whole are in intimate interconnection,
such that they cannot exist independently of the whole, or cannot be
understood without reference to the whole, which is thus regarded
as greater than the sum of its parts

Holobiont an ecological unit of different species living together in symbiosis.
The term is frequently used for the unit of a host and its associated
microbiota but can be extended to larger scales. Whether or to what
extent holobionts are also a unit of evolution is still a matter of
debate (Douglas & Werren, 2016)

Hologenome the combined genomes of the host and allmembers of itsmicrobiota;
(Rosenberg et al., 2007a; Zilber-Rosenberg & Rosenberg, 2008)

Horizontal
transmission

acquisition of the associated microbiome from the environment
(e.g.,Myers & Rothman, 1995; Roughgarden, 2019)

Host the largest or dominant partner in a holobiont
Infochemical a chemical compound, usually diffusible, that carries information

on the environment, such as the presence of other organisms, and
can be used to mediate inter- and intraspecific communication
(Dicke & Sabelis, 1988)

Microbial gardening the act of frequently releasing growth-enhancing or inhibiting
chemicals or metabolites that favor the development of a microbial
community beneficial to the host (see e.g., Saha & Weinberger,
2019)

Microbiome the combined genetic information encoded by the microbiota;
may also refer to the microbiota itself or the microbiota and its
environment (seeMarchesi & Ravel, 2015)

Microbiota all microorganisms present in a particular environment or
associated with a particular host (seeMarchesi & Ravel, 2015)

Nested ecosystems a view of ecosystems where each individual system, like a ‘‘Russian
doll’’, can be decomposed into smaller systems and/or considered
part of a larger system, all of which still qualify as ecosystems (e.g.,
McFall-Ngai et al., 2013)

Phagocytosis a process by which a eukaryotic cell ingests other cells or solid
particles, e.g., the engulfing of symbionts by sponges (Leys et al.,
2018)

Phycosphere the physical envelope surrounding a phytoplankton cell; usually
rich in organic matter (see Amin, Parker & Armbrust, 2012)
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Phylosymbiosis congruence in the phylogeny of different hosts and the composition
of their associated microbiota (Brooks et al., 2016)

Rasputin effect the phenomenon that commensals and mutualists can become
parasitic in certain conditions (Overstreet & Lotz, 2016); after the
Russian monk Rasputin who became the confidant of the Tsar of
Russia, but later helped bring down the Tsar’s empire during the
Russian revolution

Sponge loop sponges efficiently recycle dissolved organic matter turning it into
detritus that becomes food for other consumers (De Goeij et al.,
2013)

Symbiont an organism living in symbiosis; usually refers to the smaller/micro-
bial partners living in mutualistic relationships (see also host),
but also includes organisms in commensalistic and parasitic
relationships

Symbiosis a close and lasting or recurrent (e.g., over generations) relationship
between organisms living together; usually refers to mutualistic
relationships, but also includes commensalism and parasitism

Vertical
transmission

acquisition of the associated microbiome by a new generation of
hosts from the parents (as opposed to horizontal transmission; e.g.,
Roughgarden, 2019)
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