6 research outputs found

    Explorations, Vol. 5, No. 1

    Get PDF
    Articles include: Cover: What Have We Done with Tomorrow? by Leslie C. Hyde, UMCES Extension Agent for Knox-Lincoln Counties. Editorial Reflections, Carole J. Bombard UMCES: an overview Conversation with the Director: Assistant Vice-President Judith Bailey Reaching Out for Teen Awareness, by Theresa M. Ferrari Profile of a Harbormaster, by Carole J. Bombard Minding Maine’s Business, by Mary S. Bowie Family Resource Management: Learning to ease the burden, by Olive Dubord and Doris Cushman Breaking Free and Taking Control: Helen Sawyer’s Story, by Doris Manley Partnership in Conservation: The Josephine Newman Sanctuary, by Nancy Coverstone The Mount Desert Island Health Promotion Project, by Ron Beard Dynamics of Weed Control in Agriculture, by Leigh Morrow From Generation to Generation: An Extension Homemaker Family, by Nadine B. Reimer ICLAD: The Institute for Community Leadership and Development, by Jim Killacky and Deb Burwell Exploding the Cinderella Syndrome: Strengthening Stepfamilies, by Wendy Pollock Integrated Pest Management: Bringing it all together, by Glen Koehler and Jim Dill Addressing the Issues, by Patricia M. Pierson Anti-Bruise: What’s It All About? Maine Potato Harvest Anti-Bruise Program, by Neal D. Hallee H.O.P.E. Addresses Teenage Pregnancy, by Jane M. Kelly Saving Money and the Environment, by Vaughn H. Holyoke Reservoir Tillage in Nonirrigated Potato Production, by Leigh Morrow Managing Pesticide Drift, by James D. Dwyer, Leigh S. Morrow and James F. Dill The St. George River Project — what have we done with tomorrow? Putting Research to Work, by Stephen Belyea The Best Maine Blue: Fresh Pack Blueberries, by Tom DeGomez Maine’s Green Sea Urchin, by Benjamin A. Baxter Interfaces and Cooperation: Wildlife and Fisheries Sampler, by Catherine A. Elliott Extension Responds to the Salmonella Scare, by Nellie Hedstrom and Mahmoud El-Begearm

    Swept Under the Rug? A Historiography of Gender and Black Colleges

    Full text link

    The mules that are not mules - metrics, morphology, archaeogenomics and mtDNA d-loop diversity in equids from Roman Switzerland

    No full text
    Mules (Equus asinus x Equus caballus) represent first-generation hybrids between a female horse (mare) and a male donkey (jack). They are generally considered to have first appeared north of the Alps with Roman influence, a time period in which written and iconographic sources support their key role for transport and traction, both in farming and the military. The archaeozoological evidence for mules is, however, contentious as faunal assemblages are difficult to assign to either parental species or hybrids based on morphometric data alone. Here we leverage low-coverage DNA sequence data and Zonkey computational analyses to assess the occurrence of mules within Roman equid faunal assemblages in the alpine foreland. While morphological data previously assigned 17 remains to mules, successful DNA analysis of 12 remains revealed that 11 were in fact horses, one female and ten males. Eight mtDNA d-loop haplogroups were identified and genetic diversity within Roman equids corresponds to non-threatened modern local breeds. Two remains genetically identified as mules belonged to haplogroups F and I. Our results suggest that the importance of mules in the Roman archaeological record of the alpine foreland, and probably elsewhere, may have been previously over-estimated. Whether this is true for other regions of the Roman Empire needs to be evaluated. Further genomic testing for equid species and their hybrids and molecular sexing will improve our knowledge on this important issue

    Tracking five millennia of horse management with extensive ancient genome time series

    Get PDF
    Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management.T.M.-B. was supported by the BFU2017-86471-P (MINECO/FEDER, UE), the U01 MH106874 grant, Howard Hughes International Early Career, Obra Social “La Caixa,” and Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya. V.P. was supported by Russian Science Foundation (16-18-10265). This research received support from the SYNTHESYS Project (http://www.synthesys.info/), which is financed by European Community Research Infrastructure Action under the Seventh Framework “Capacities” Programme. This work was supported by the Danish National Research Foundation (DNRF94), the Initiative d’Excellence Chaires d’attractivité, Université de Toulouse (OURASI), the International Highly Cited Research Group Program (HCRC#15-101), Deanship of Scientific Research, King Saud University, the Villum Fonden miGENEPI research project, the Swiss National Science Foundation (CR13I1_140638), the Research Council of Norway (project 230821/F20); the investigation grant HAR2016-77600-P, Ministerio de Economía y Competitividad, Spain, and the National Science Foundation (ANS-1417036). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 681605)

    Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series

    No full text
    corecore