633 research outputs found

    The impact of vegetation on lithological mapping using airborne multispectral data: a case study for the North Troodos Region, Cyprus

    Get PDF
    Vegetation cover can affect the lithological mapping capability of space- and airborne instruments because it obscures the spectral signatures of the underlying geological substrate. Despite being widely accepted as a hindrance, few studies have explicitly demonstrated the impact vegetation can have on remote lithological mapping. Accordingly, this study comprehensively elucidates the impact of vegetation on the lithological mapping capability of airborne multispectral data in the Troodos region, Cyprus. Synthetic spectral mixtures were first used to quantify the potential impact vegetation cover might have on spectral recognition and remote mapping of different rock types. The modeled effects of green grass were apparent in the spectra of low albedo lithologies for 30%–40% fractional cover, compared to just 20% for dry grass cover. Lichen was found to obscure the spectra for 30%–50% cover, depending on the spectral contrast between bare rock and lichen cover. The subsequent impact of vegetation on the remote mapping capability is elucidated by considering the outcomes of three airborne multispectral lithological classifications alongside the spectral mixing analysis and field observations. Vegetation abundance was found to be the primary control on the inability to classify large proportions of pixels in the imagery. Matched Filtering outperformed direct spectral matching algorithms owing to its ability to partially unmix pixel spectra with vegetation abundance above the modeled limits. This study highlights that despite the limited spectral sampling and resolution of the sensor and dense, ubiquitous vegetation cover, useful lithological information can be extracted using an appropriate algorithm. Furthermore, the findings of this case study provide a useful insight to the potential capabilities and challenges faced when utilizing comparable sensors (e.g., Landsat 8, Sentinel-2, WorldView-3) to map similar types of terrain

    Lithological mapping of the Troodos ophiolite, Cyprus, using airborne LiDAR topographic data

    Get PDF
    Traditional field-based lithological mapping can be a time-consuming, costly and challenging endeavour when large areas need to be investigated, where terrain is remote and difficult to access and where the geology is highly variable over short distances. Consequently, rock units are often mapped at coarse-scales, resulting in lithological maps that have generalised contacts which in many cases are inaccurately located. Remote sensing data, such as aerial photographs and satellite imagery are commonly incorporated into geological mapping programmes to obtain geological information that is best revealed by overhead perspectives. However, spatial and spectral limitations of the imagery and dense vegetation cover can limit the utility of traditional remote sensing products. The advent of Airborne Light Detection And Ranging (LiDAR) as a remote sensing tool offers the potential to provide a novel solution to these problems because accurate and high-resolution topographic data can be acquired in either forested or non-forested terrain, allowing discrimination of individual rock types that typically have distinct topographic characteristics. This study assesses the efficacy of airborne LiDAR as a tool for detailed lithological mapping in the upper section of the Troodos ophiolite, Cyprus. Morphometric variables (including slope, curvature and surface roughness) were derived from a 4 m digital terrain model in order to quantify the topographic characteristics of four principal lithologies found in the area. An artificial neural network (the Kohonen Self-Organizing Map) was then employed to classify the lithological units based upon these variables. The algorithm presented here was used to generate a detailed lithological map which defines lithological contacts much more accurately than the best existing geological map. In addition, a separate map of classification uncertainty highlights potential follow-up targets for ground-based verification. The results of this study demonstrate the significant potential of airborne LiDAR for lithological discrimination and rapid generation of detailed lithological maps, as a contribution to conventional geological mapping programmes

    Crustal evolution of the Saykhandulaan inlier, Mongolia : implications for Palaeozoic arc magmatism, polyphase deformation and terrane accretion in the southeast Gobi mineral belt

    Get PDF
    The Saykhandulaan Inlier in South East Mongolia lies within the Central Asian Orogenic Belt (CAOB), and records a complex history of Palaeozoic tectonism and magmatism associated with terrane accretion on the northern margin of the Palaeo-Asian ocean. The inlier spans the boundary between the Gobi Altai back-arc basin terrane in the north and the Mandalovoo and Gurvansayhan island-arc terranes in the south which are notable for their many mineralised intrusions, including the Oyu Tolgoi gold-rich copper porphyry deposit. Results from cross-strike transects within the Saykhandulaan Inlier reveal that it can be subdivided into five parallel east–west striking litho-tectonic domains; (1) the Northern Slate Belt, comprising Devonian greenschist grade pelites and psammites with deep-marine to coastal siliciclastic protoliths; (2) the Saykhandulaan Valley Lineament Zone (SVLZ), a tectonised zone of faulted and lithologically altered volcanic rocks; (3) the High Strain Belt, consisting of tightly folded and flattened metamorphosed clastic sedimentary rocks; (4) the Molasse Succession, consisting of relatively undeformed coarse conglomerates and sandstones and, (5) the Oyut Ulaan Volcanic Group, a nearly 5 km-thick folded Carboniferous volcanic succession that hosts the mid-Carboniferous Oyut Ulaan mineralised granite. The Northern Slate Belt metasedimentary rocks record a northerly cratonic provenance, whereas all rocks to the south of the SVLZ have arc affinities. The SVLZ is thus interpreted to be the boundary between the Gobi Altai and Mandalovoo terranes. Two major deformation events are documented; (1) back-arc basin closure and inversion involving regional scale folding and greenschist grade metamorphism in the Northern Slate and High Strain Belts; (2) contraction associated with Mandalovoo terrane accretion and final closure of the Palaeo-Asian Ocean to the south. Following terrane accretion and cessation of subduction, crustal extension and strike-slip faulting further modified the crustal architecture of the inlier. The results presented here provide a useful framework for understanding the crustal evolution of adjacent regions within the southeast Gobi mineral belt

    Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia

    Get PDF
    Results are presented of the first airborne LiDAR survey ever flown in Europe for the purpose of mapping the surface expression of earthquake-prone faults. Detailed topographic images derived from LiDAR data of the Idrija and Ravne strike-slip faults in NW Slovenia reveal geomorphological and structural features that shed light on the overall architecture and kinematic history of both fault systems. The 1998 Mw = 5.6, and 2004 Mw = 5.2 Ravne Fault earthquakes and the historically devastating 1511 M = 6.8 Idrija earthquake indicate that both systems pose a serious seismic hazard in the region. Because both fault systems occur within forested terrain, a tree removal algorithm was applied to the data; the resulting images reveal surface scarps and tectonic landforms in unprecedented detail. Importantly, two sites were discovered to be potentially suitable for fault trenching and palaeo-seismological analysis. This study highlights the potential contribution of LiDAR surveying in both low-relief valley terrain and high-relief mountainous terrain to a regional seismic hazard assessment programme. Geoscientists working in other tectonically active regions of the world where earthquake-prone faults are obscured by forest cover would also benefit from LiDAR maps that have been processed to remove the canopy return and reveal the forest floor topography

    Multi-disciplinary investigations of active faults in the Julian Alps, Slovenia

    Get PDF
    UK-Slovenian collaborative research connected to EU COST-Action 625 began in 2003 and has involved interdisciplinary research into the current activity, structural architecture and landscape expression of the Ravne and Idrija strike-slip fault systems in NW Slovenia. The Ravne fault may be the best exposed actively propagating strike-slip fault system in Europe and through combined structural fieldwork, earthquake seismology and airborne LiDAR (Light Detection And Ranging) surveys, a new understanding of the fault’s along-strike segmentation, three dimensional geometry and stepover zone kinematics has been gained. The Idrija Fault in contrast, is poorly exposed, but defines a regional lineament with an intensely brecciated fault core; it may have been responsible for the largest historical earthquake to have ever affected the region. High-resolution LiDAR images recently obtained for both fault systems allow for efficient focussed fieldwork and future work will be devoted to documenting the timing of previous earthquakes and the connectivity and displacement transfer between active faults at the NE corner of the Adria microplate

    Structural style of basin inversion at mid-crustal levels : two transects in the internal zone of the Brasiliano Ara?ua? belt, Minas Gerais, Brazil.

    Get PDF
    The Ara?uai belt is the orogenic belt that directly borders the eastern margin of the S?o Francisco Craton in eastern Brazil. Detailed structural investigations in the Governador Valadares region of Minas Gerais indicate that the amphibolite-to granulite-grade internal zones of the Ara?uai belt contain several major, west-vergent, crystalline overthrust sheets. These thrust sheets contain approximately homoclinal east-dipping gneissic banding and are separated from one another by zones of isoclinally and sheath-folded, ductiley sheared, metasedimentary units that behaved as mechanically weak glide horizons during deformation. We interpret this regionally imbricated sequence of basement and cover to be the mid-crustal level manifestation of closure of a mid-Neoproterozoic rift basin that existed to the east of the S?o Francisco Craton. The major thrusts, which are all cratonvergent, are of Brasiliano/Pan-African age (650-450 Ma) becuase they cut the Neoproterozoic Galil?ia batholith. Older fabrics are locally preserved in the basement slices, and these fabrics may be relicts of the Transamazonian orogeny (2.0 Ga). Discrete zones of ductile-brittle extension that were identified in several localities in the study area suggest the occurrence of postorogenic collapse following Brasiliano overthrusting. Alternations of rigid crystalline thrust sheets and highly deformed metasedimentary sequences, such as those of the Governador Valadares region, may be a common structural geometry at a depth of 15?20 km in modern regions of collision and basin closure

    On the currents and transports connected with the atlantic meridional overturning circulation in the subpolar North Atlantic

    Get PDF
    Results from an interannually forced, 0.08 degrees eddy-resolving simulation based on the Hybrid Coordinate Ocean Model, in conjunction with a small but well-determined transport database, are used to investigate the currents and transports associated with the Atlantic meridional overturning circulation (AMOC) in the subpolar North Atlantic (SPNA). The model results yield a consistent warming in the western SPNA since the early 1990s, along with mean transports similar to those observed for the trans-basin AMOC across the World Ocean Circulation Experiment hydrographic section AR19 (16.4 Sv) and boundary currents at the exit of the Labrador Sea near 53 degrees N (39.0 Sv) and east of the Grand Banks near 43 degrees N (15.9 Sv). Over a 34 year integration, the model-determined AMOC across the AR19 section and the western boundary current near 53 degrees N both exhibit no systematic trend but some long-term (interannual and longer) variabilities, including a decadal transport variation of 3-4 Sv from relatively high in the 1990s to low in the 2000s. The decadal variability of the model boundary current transport near 53 degrees N lags the observed winter time North Atlantic Oscillation index by about 2 years and leads the model AMOC across the AR19 section by about 1 year. The model results also show that the long-term variabilities are low compared to those on shorter time scales. Thus, rapid sampling of the current over long time intervals is required to filter out high-frequency variabilities in order to determine the lower frequency variabilities of interes
    • …
    corecore