Results are presented of the first airborne LiDAR survey ever flown in Europe for the purpose of mapping the surface expression of earthquake-prone faults. Detailed topographic images derived from LiDAR data of the Idrija and Ravne strike-slip faults in NW Slovenia reveal geomorphological and structural features that shed light on the overall architecture and kinematic history of both fault systems. The 1998 Mw = 5.6, and 2004 Mw = 5.2 Ravne Fault earthquakes and the historically devastating 1511 M = 6.8 Idrija earthquake indicate that both systems pose a serious seismic hazard in the region. Because both fault systems occur within forested terrain, a tree removal algorithm was applied to the data; the resulting images reveal surface scarps and tectonic landforms in unprecedented detail. Importantly, two sites were discovered to be potentially suitable for fault trenching and palaeo-seismological analysis. This study highlights the potential contribution of LiDAR surveying in both low-relief valley terrain and high-relief mountainous terrain to a regional seismic hazard assessment programme. Geoscientists working in other tectonically active regions of the world where earthquake-prone faults are obscured by forest cover would also benefit from LiDAR maps that have been processed to remove the canopy return and reveal the forest floor topography